Properties

Label 2-4725-1.1-c1-0-88
Degree $2$
Conductor $4725$
Sign $-1$
Analytic cond. $37.7293$
Root an. cond. $6.14241$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 7-s − 6·11-s + 4·13-s + 4·16-s + 3·17-s + 2·19-s − 6·23-s + 2·28-s + 6·29-s − 4·31-s + 7·37-s + 3·41-s + 43-s + 12·44-s + 9·47-s + 49-s − 8·52-s − 6·53-s − 9·59-s − 10·61-s − 8·64-s + 4·67-s − 6·68-s − 2·73-s − 4·76-s + 6·77-s + ⋯
L(s)  = 1  − 4-s − 0.377·7-s − 1.80·11-s + 1.10·13-s + 16-s + 0.727·17-s + 0.458·19-s − 1.25·23-s + 0.377·28-s + 1.11·29-s − 0.718·31-s + 1.15·37-s + 0.468·41-s + 0.152·43-s + 1.80·44-s + 1.31·47-s + 1/7·49-s − 1.10·52-s − 0.824·53-s − 1.17·59-s − 1.28·61-s − 64-s + 0.488·67-s − 0.727·68-s − 0.234·73-s − 0.458·76-s + 0.683·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4725\)    =    \(3^{3} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(37.7293\)
Root analytic conductor: \(6.14241\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4725,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
good2 \( 1 + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 9 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 - 3 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84992044053964800085190220961, −7.61770564757961554271645892692, −6.19833528683953656752348977000, −5.74521170629862645004981667515, −5.00255743126005056194877093074, −4.18667550940177211931958995326, −3.37523251394481359790706196138, −2.59135104534746647872303823771, −1.15394968040695473674965847739, 0, 1.15394968040695473674965847739, 2.59135104534746647872303823771, 3.37523251394481359790706196138, 4.18667550940177211931958995326, 5.00255743126005056194877093074, 5.74521170629862645004981667515, 6.19833528683953656752348977000, 7.61770564757961554271645892692, 7.84992044053964800085190220961

Graph of the $Z$-function along the critical line