Properties

Label 2-4725-1.1-c1-0-34
Degree $2$
Conductor $4725$
Sign $1$
Analytic cond. $37.7293$
Root an. cond. $6.14241$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 7-s + 4·11-s + 2·13-s − 2·14-s − 4·16-s + 3·17-s − 8·19-s − 8·22-s − 6·23-s − 4·26-s + 2·28-s + 4·29-s + 6·31-s + 8·32-s − 6·34-s + 3·37-s + 16·38-s − 41-s − 11·43-s + 8·44-s + 12·46-s + 9·47-s + 49-s + 4·52-s + 6·53-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 0.377·7-s + 1.20·11-s + 0.554·13-s − 0.534·14-s − 16-s + 0.727·17-s − 1.83·19-s − 1.70·22-s − 1.25·23-s − 0.784·26-s + 0.377·28-s + 0.742·29-s + 1.07·31-s + 1.41·32-s − 1.02·34-s + 0.493·37-s + 2.59·38-s − 0.156·41-s − 1.67·43-s + 1.20·44-s + 1.76·46-s + 1.31·47-s + 1/7·49-s + 0.554·52-s + 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4725\)    =    \(3^{3} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(37.7293\)
Root analytic conductor: \(6.14241\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4725,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.012902154\)
\(L(\frac12)\) \(\approx\) \(1.012902154\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good2 \( 1 + p T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 - 6 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 + T + p T^{2} \)
43 \( 1 + 11 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 15 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 + 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.407278654361839594875042079713, −7.969849777084856880127752292939, −6.81502226261946169031511424942, −6.54633235757052815762147036572, −5.55980524920676678159441673636, −4.34985966101146994294648839607, −3.89790184589722926265726875919, −2.45382424012958058933057868357, −1.61818169107176743751082127937, −0.73231116309430509246980233589, 0.73231116309430509246980233589, 1.61818169107176743751082127937, 2.45382424012958058933057868357, 3.89790184589722926265726875919, 4.34985966101146994294648839607, 5.55980524920676678159441673636, 6.54633235757052815762147036572, 6.81502226261946169031511424942, 7.969849777084856880127752292939, 8.407278654361839594875042079713

Graph of the $Z$-function along the critical line