Properties

Label 2-4725-1.1-c1-0-137
Degree $2$
Conductor $4725$
Sign $-1$
Analytic cond. $37.7293$
Root an. cond. $6.14241$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.83·2-s + 1.36·4-s − 7-s − 1.16·8-s − 2.19·11-s + 5.03·13-s − 1.83·14-s − 4.86·16-s + 3.23·17-s − 6.43·19-s − 4.03·22-s − 0.364·23-s + 9.23·26-s − 1.36·28-s + 0.364·29-s − 8.70·31-s − 6.59·32-s + 5.92·34-s + 2.76·37-s − 11.7·38-s − 7.32·41-s + 9.19·43-s − 3.00·44-s − 0.668·46-s − 10.7·47-s + 49-s + 6.86·52-s + ⋯
L(s)  = 1  + 1.29·2-s + 0.682·4-s − 0.377·7-s − 0.412·8-s − 0.662·11-s + 1.39·13-s − 0.490·14-s − 1.21·16-s + 0.783·17-s − 1.47·19-s − 0.859·22-s − 0.0759·23-s + 1.81·26-s − 0.257·28-s + 0.0676·29-s − 1.56·31-s − 1.16·32-s + 1.01·34-s + 0.454·37-s − 1.91·38-s − 1.14·41-s + 1.40·43-s − 0.452·44-s − 0.0985·46-s − 1.56·47-s + 0.142·49-s + 0.952·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4725\)    =    \(3^{3} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(37.7293\)
Root analytic conductor: \(6.14241\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4725,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
good2 \( 1 - 1.83T + 2T^{2} \)
11 \( 1 + 2.19T + 11T^{2} \)
13 \( 1 - 5.03T + 13T^{2} \)
17 \( 1 - 3.23T + 17T^{2} \)
19 \( 1 + 6.43T + 19T^{2} \)
23 \( 1 + 0.364T + 23T^{2} \)
29 \( 1 - 0.364T + 29T^{2} \)
31 \( 1 + 8.70T + 31T^{2} \)
37 \( 1 - 2.76T + 37T^{2} \)
41 \( 1 + 7.32T + 41T^{2} \)
43 \( 1 - 9.19T + 43T^{2} \)
47 \( 1 + 10.7T + 47T^{2} \)
53 \( 1 + 4.53T + 53T^{2} \)
59 \( 1 + 0.740T + 59T^{2} \)
61 \( 1 - 2.96T + 61T^{2} \)
67 \( 1 + 16.0T + 67T^{2} \)
71 \( 1 + 7.99T + 71T^{2} \)
73 \( 1 + 4.12T + 73T^{2} \)
79 \( 1 - 4.12T + 79T^{2} \)
83 \( 1 + 12.5T + 83T^{2} \)
89 \( 1 - 12.4T + 89T^{2} \)
97 \( 1 + 10.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87981219100028227172204537533, −6.94299011154861351159404329458, −6.13408964004908634789885468252, −5.79931276103549145285478015829, −4.93557470429255057909127258877, −4.12352165809774644756744980007, −3.50277931449493717046875164951, −2.78408521181444822526835171788, −1.66379201495422729046026648013, 0, 1.66379201495422729046026648013, 2.78408521181444822526835171788, 3.50277931449493717046875164951, 4.12352165809774644756744980007, 4.93557470429255057909127258877, 5.79931276103549145285478015829, 6.13408964004908634789885468252, 6.94299011154861351159404329458, 7.87981219100028227172204537533

Graph of the $Z$-function along the critical line