Properties

Label 2-4725-1.1-c1-0-12
Degree $2$
Conductor $4725$
Sign $1$
Analytic cond. $37.7293$
Root an. cond. $6.14241$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.28·2-s + 3.23·4-s − 7-s − 2.82·8-s − 5.99·11-s + 5.47·13-s + 2.28·14-s − 1.95·17-s − 0.763·19-s + 13.7·22-s + 2.49·23-s − 12.5·26-s − 3.23·28-s − 0.540·29-s − 3·31-s + 5.65·32-s + 4.47·34-s − 6.70·37-s + 1.74·38-s + 1.95·41-s + 10.2·43-s − 19.3·44-s − 5.70·46-s + 2.08·47-s + 49-s + 17.7·52-s − 14.0·53-s + ⋯
L(s)  = 1  − 1.61·2-s + 1.61·4-s − 0.377·7-s − 0.999·8-s − 1.80·11-s + 1.51·13-s + 0.611·14-s − 0.474·17-s − 0.175·19-s + 2.92·22-s + 0.520·23-s − 2.45·26-s − 0.611·28-s − 0.100·29-s − 0.538·31-s + 1.00·32-s + 0.766·34-s − 1.10·37-s + 0.283·38-s + 0.305·41-s + 1.56·43-s − 2.92·44-s − 0.841·46-s + 0.303·47-s + 0.142·49-s + 2.45·52-s − 1.93·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4725\)    =    \(3^{3} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(37.7293\)
Root analytic conductor: \(6.14241\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4725,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5245487907\)
\(L(\frac12)\) \(\approx\) \(0.5245487907\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
good2 \( 1 + 2.28T + 2T^{2} \)
11 \( 1 + 5.99T + 11T^{2} \)
13 \( 1 - 5.47T + 13T^{2} \)
17 \( 1 + 1.95T + 17T^{2} \)
19 \( 1 + 0.763T + 19T^{2} \)
23 \( 1 - 2.49T + 23T^{2} \)
29 \( 1 + 0.540T + 29T^{2} \)
31 \( 1 + 3T + 31T^{2} \)
37 \( 1 + 6.70T + 37T^{2} \)
41 \( 1 - 1.95T + 41T^{2} \)
43 \( 1 - 10.2T + 43T^{2} \)
47 \( 1 - 2.08T + 47T^{2} \)
53 \( 1 + 14.0T + 53T^{2} \)
59 \( 1 + 11.6T + 59T^{2} \)
61 \( 1 + 9.70T + 61T^{2} \)
67 \( 1 - 10.2T + 67T^{2} \)
71 \( 1 - 1.08T + 71T^{2} \)
73 \( 1 - 13.1T + 73T^{2} \)
79 \( 1 - 2.23T + 79T^{2} \)
83 \( 1 - 3.16T + 83T^{2} \)
89 \( 1 - 15.5T + 89T^{2} \)
97 \( 1 + 5.23T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.155893776383451653582661576129, −7.955035937630844206239769190992, −7.08210382904580973054747203335, −6.37018363773778563678940560299, −5.61281283990504193364249315068, −4.64289572440631920742306516850, −3.44949875741231211218771234282, −2.58896670155777034773437290572, −1.67421762134005123252944882847, −0.50812155415059351283782559206, 0.50812155415059351283782559206, 1.67421762134005123252944882847, 2.58896670155777034773437290572, 3.44949875741231211218771234282, 4.64289572440631920742306516850, 5.61281283990504193364249315068, 6.37018363773778563678940560299, 7.08210382904580973054747203335, 7.955035937630844206239769190992, 8.155893776383451653582661576129

Graph of the $Z$-function along the critical line