Properties

Label 2-4725-1.1-c1-0-113
Degree $2$
Conductor $4725$
Sign $-1$
Analytic cond. $37.7293$
Root an. cond. $6.14241$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.656·2-s − 1.56·4-s − 7-s − 2.34·8-s + 1.91·11-s − 0.255·13-s − 0.656·14-s + 1.59·16-s − 6.16·17-s + 7.08·19-s + 1.25·22-s + 2.56·23-s − 0.167·26-s + 1.56·28-s − 2.56·29-s − 1.05·31-s + 5.73·32-s − 4.04·34-s − 8.39·37-s + 4.64·38-s + 10.8·41-s + 5.08·43-s − 3·44-s + 1.68·46-s − 3.05·47-s + 49-s + 0.401·52-s + ⋯
L(s)  = 1  + 0.464·2-s − 0.784·4-s − 0.377·7-s − 0.828·8-s + 0.576·11-s − 0.0708·13-s − 0.175·14-s + 0.399·16-s − 1.49·17-s + 1.62·19-s + 0.267·22-s + 0.535·23-s − 0.0329·26-s + 0.296·28-s − 0.477·29-s − 0.189·31-s + 1.01·32-s − 0.694·34-s − 1.37·37-s + 0.754·38-s + 1.69·41-s + 0.775·43-s − 0.452·44-s + 0.248·46-s − 0.446·47-s + 0.142·49-s + 0.0556·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4725\)    =    \(3^{3} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(37.7293\)
Root analytic conductor: \(6.14241\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4725,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
good2 \( 1 - 0.656T + 2T^{2} \)
11 \( 1 - 1.91T + 11T^{2} \)
13 \( 1 + 0.255T + 13T^{2} \)
17 \( 1 + 6.16T + 17T^{2} \)
19 \( 1 - 7.08T + 19T^{2} \)
23 \( 1 - 2.56T + 23T^{2} \)
29 \( 1 + 2.56T + 29T^{2} \)
31 \( 1 + 1.05T + 31T^{2} \)
37 \( 1 + 8.39T + 37T^{2} \)
41 \( 1 - 10.8T + 41T^{2} \)
43 \( 1 - 5.08T + 43T^{2} \)
47 \( 1 + 3.05T + 47T^{2} \)
53 \( 1 + 2.77T + 53T^{2} \)
59 \( 1 + 8.36T + 59T^{2} \)
61 \( 1 + 12.3T + 61T^{2} \)
67 \( 1 + 8.93T + 67T^{2} \)
71 \( 1 - 12.5T + 71T^{2} \)
73 \( 1 - 9.96T + 73T^{2} \)
79 \( 1 + 9.96T + 79T^{2} \)
83 \( 1 + 3.71T + 83T^{2} \)
89 \( 1 + 6.33T + 89T^{2} \)
97 \( 1 - 5.64T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.904866259964254889485124035790, −7.15221649533612235153521580192, −6.38131682750270174057663849800, −5.64864079580846044290746332326, −4.91326204875044506268445858442, −4.20316801294611183965617604339, −3.46462548405289852447864186265, −2.67033165243441128499796355716, −1.29408087486877157715752612739, 0, 1.29408087486877157715752612739, 2.67033165243441128499796355716, 3.46462548405289852447864186265, 4.20316801294611183965617604339, 4.91326204875044506268445858442, 5.64864079580846044290746332326, 6.38131682750270174057663849800, 7.15221649533612235153521580192, 7.904866259964254889485124035790

Graph of the $Z$-function along the critical line