L(s) = 1 | − 0.874·2-s − 1.23·4-s − 7-s + 2.82·8-s − 0.333·11-s − 3.47·13-s + 0.874·14-s + 5.11·17-s − 5.23·19-s + 0.291·22-s − 8.81·23-s + 3.03·26-s + 1.23·28-s + 3.70·29-s − 3·31-s − 5.65·32-s − 4.47·34-s + 6.70·37-s + 4.57·38-s − 5.11·41-s + 5.76·43-s + 0.412·44-s + 7.70·46-s + 10.5·47-s + 49-s + 4.29·52-s − 11.2·53-s + ⋯ |
L(s) = 1 | − 0.618·2-s − 0.618·4-s − 0.377·7-s + 0.999·8-s − 0.100·11-s − 0.962·13-s + 0.233·14-s + 1.24·17-s − 1.20·19-s + 0.0622·22-s − 1.83·23-s + 0.595·26-s + 0.233·28-s + 0.687·29-s − 0.538·31-s − 0.999·32-s − 0.766·34-s + 1.10·37-s + 0.742·38-s − 0.799·41-s + 0.878·43-s + 0.0622·44-s + 1.13·46-s + 1.54·47-s + 0.142·49-s + 0.595·52-s − 1.54·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6817302282\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6817302282\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + T \) |
good | 2 | \( 1 + 0.874T + 2T^{2} \) |
| 11 | \( 1 + 0.333T + 11T^{2} \) |
| 13 | \( 1 + 3.47T + 13T^{2} \) |
| 17 | \( 1 - 5.11T + 17T^{2} \) |
| 19 | \( 1 + 5.23T + 19T^{2} \) |
| 23 | \( 1 + 8.81T + 23T^{2} \) |
| 29 | \( 1 - 3.70T + 29T^{2} \) |
| 31 | \( 1 + 3T + 31T^{2} \) |
| 37 | \( 1 - 6.70T + 37T^{2} \) |
| 41 | \( 1 + 5.11T + 41T^{2} \) |
| 43 | \( 1 - 5.76T + 43T^{2} \) |
| 47 | \( 1 - 10.5T + 47T^{2} \) |
| 53 | \( 1 + 11.2T + 53T^{2} \) |
| 59 | \( 1 - 5.32T + 59T^{2} \) |
| 61 | \( 1 - 3.70T + 61T^{2} \) |
| 67 | \( 1 - 5.76T + 67T^{2} \) |
| 71 | \( 1 + 7.40T + 71T^{2} \) |
| 73 | \( 1 + 9.18T + 73T^{2} \) |
| 79 | \( 1 + 2.23T + 79T^{2} \) |
| 83 | \( 1 - 3.16T + 83T^{2} \) |
| 89 | \( 1 + 15.5T + 89T^{2} \) |
| 97 | \( 1 + 0.763T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.237024845095243931578809849045, −7.78975905603710043700156041499, −7.06421717244821545187641934429, −6.06955071735896022981437947230, −5.43028382550787418478381249904, −4.44390563320090702716707713269, −3.93314929493145864733254626263, −2.77930032839905193205662642684, −1.77784557471176990639422065423, −0.49984678476585637580904345489,
0.49984678476585637580904345489, 1.77784557471176990639422065423, 2.77930032839905193205662642684, 3.93314929493145864733254626263, 4.44390563320090702716707713269, 5.43028382550787418478381249904, 6.06955071735896022981437947230, 7.06421717244821545187641934429, 7.78975905603710043700156041499, 8.237024845095243931578809849045