Properties

Label 2-4725-1.1-c1-0-11
Degree $2$
Conductor $4725$
Sign $1$
Analytic cond. $37.7293$
Root an. cond. $6.14241$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.874·2-s − 1.23·4-s − 7-s + 2.82·8-s − 0.333·11-s − 3.47·13-s + 0.874·14-s + 5.11·17-s − 5.23·19-s + 0.291·22-s − 8.81·23-s + 3.03·26-s + 1.23·28-s + 3.70·29-s − 3·31-s − 5.65·32-s − 4.47·34-s + 6.70·37-s + 4.57·38-s − 5.11·41-s + 5.76·43-s + 0.412·44-s + 7.70·46-s + 10.5·47-s + 49-s + 4.29·52-s − 11.2·53-s + ⋯
L(s)  = 1  − 0.618·2-s − 0.618·4-s − 0.377·7-s + 0.999·8-s − 0.100·11-s − 0.962·13-s + 0.233·14-s + 1.24·17-s − 1.20·19-s + 0.0622·22-s − 1.83·23-s + 0.595·26-s + 0.233·28-s + 0.687·29-s − 0.538·31-s − 0.999·32-s − 0.766·34-s + 1.10·37-s + 0.742·38-s − 0.799·41-s + 0.878·43-s + 0.0622·44-s + 1.13·46-s + 1.54·47-s + 0.142·49-s + 0.595·52-s − 1.54·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4725\)    =    \(3^{3} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(37.7293\)
Root analytic conductor: \(6.14241\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4725,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6817302282\)
\(L(\frac12)\) \(\approx\) \(0.6817302282\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
good2 \( 1 + 0.874T + 2T^{2} \)
11 \( 1 + 0.333T + 11T^{2} \)
13 \( 1 + 3.47T + 13T^{2} \)
17 \( 1 - 5.11T + 17T^{2} \)
19 \( 1 + 5.23T + 19T^{2} \)
23 \( 1 + 8.81T + 23T^{2} \)
29 \( 1 - 3.70T + 29T^{2} \)
31 \( 1 + 3T + 31T^{2} \)
37 \( 1 - 6.70T + 37T^{2} \)
41 \( 1 + 5.11T + 41T^{2} \)
43 \( 1 - 5.76T + 43T^{2} \)
47 \( 1 - 10.5T + 47T^{2} \)
53 \( 1 + 11.2T + 53T^{2} \)
59 \( 1 - 5.32T + 59T^{2} \)
61 \( 1 - 3.70T + 61T^{2} \)
67 \( 1 - 5.76T + 67T^{2} \)
71 \( 1 + 7.40T + 71T^{2} \)
73 \( 1 + 9.18T + 73T^{2} \)
79 \( 1 + 2.23T + 79T^{2} \)
83 \( 1 - 3.16T + 83T^{2} \)
89 \( 1 + 15.5T + 89T^{2} \)
97 \( 1 + 0.763T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.237024845095243931578809849045, −7.78975905603710043700156041499, −7.06421717244821545187641934429, −6.06955071735896022981437947230, −5.43028382550787418478381249904, −4.44390563320090702716707713269, −3.93314929493145864733254626263, −2.77930032839905193205662642684, −1.77784557471176990639422065423, −0.49984678476585637580904345489, 0.49984678476585637580904345489, 1.77784557471176990639422065423, 2.77930032839905193205662642684, 3.93314929493145864733254626263, 4.44390563320090702716707713269, 5.43028382550787418478381249904, 6.06955071735896022981437947230, 7.06421717244821545187641934429, 7.78975905603710043700156041499, 8.237024845095243931578809849045

Graph of the $Z$-function along the critical line