Properties

Label 2-4704-1.1-c1-0-51
Degree $2$
Conductor $4704$
Sign $1$
Analytic cond. $37.5616$
Root an. cond. $6.12875$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4.13·5-s + 9-s + 2.29·11-s − 2.43·13-s + 4.13·15-s + 3.71·17-s + 7.84·19-s + 1.70·23-s + 12.0·25-s + 27-s + 3.25·29-s − 1.80·31-s + 2.29·33-s − 5.65·37-s − 2.43·39-s − 6.81·41-s − 5.44·43-s + 4.13·45-s − 13.2·47-s + 3.71·51-s + 9.09·53-s + 9.50·55-s + 7.84·57-s − 14.9·59-s + 2.16·61-s − 10.0·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.84·5-s + 0.333·9-s + 0.693·11-s − 0.674·13-s + 1.06·15-s + 0.900·17-s + 1.80·19-s + 0.354·23-s + 2.41·25-s + 0.192·27-s + 0.603·29-s − 0.324·31-s + 0.400·33-s − 0.929·37-s − 0.389·39-s − 1.06·41-s − 0.829·43-s + 0.616·45-s − 1.93·47-s + 0.519·51-s + 1.24·53-s + 1.28·55-s + 1.03·57-s − 1.94·59-s + 0.277·61-s − 1.24·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4704\)    =    \(2^{5} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(37.5616\)
Root analytic conductor: \(6.12875\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4704} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4704,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.002289984\)
\(L(\frac12)\) \(\approx\) \(4.002289984\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
good5 \( 1 - 4.13T + 5T^{2} \)
11 \( 1 - 2.29T + 11T^{2} \)
13 \( 1 + 2.43T + 13T^{2} \)
17 \( 1 - 3.71T + 17T^{2} \)
19 \( 1 - 7.84T + 19T^{2} \)
23 \( 1 - 1.70T + 23T^{2} \)
29 \( 1 - 3.25T + 29T^{2} \)
31 \( 1 + 1.80T + 31T^{2} \)
37 \( 1 + 5.65T + 37T^{2} \)
41 \( 1 + 6.81T + 41T^{2} \)
43 \( 1 + 5.44T + 43T^{2} \)
47 \( 1 + 13.2T + 47T^{2} \)
53 \( 1 - 9.09T + 53T^{2} \)
59 \( 1 + 14.9T + 59T^{2} \)
61 \( 1 - 2.16T + 61T^{2} \)
67 \( 1 + 10.2T + 67T^{2} \)
71 \( 1 + 3.95T + 71T^{2} \)
73 \( 1 - 9.68T + 73T^{2} \)
79 \( 1 - 10.0T + 79T^{2} \)
83 \( 1 + 11.6T + 83T^{2} \)
89 \( 1 - 12.7T + 89T^{2} \)
97 \( 1 - 12.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.454354936382086483114900281001, −7.49269861957768744147744540121, −6.83482517945793104112583775173, −6.14797572370043070934174795386, −5.25031010699411657681864936736, −4.91451343226632032761867945045, −3.42993025958501169400738866604, −2.91263910094936057142436797505, −1.82890126691397605728281817187, −1.23360813198237427455226400396, 1.23360813198237427455226400396, 1.82890126691397605728281817187, 2.91263910094936057142436797505, 3.42993025958501169400738866604, 4.91451343226632032761867945045, 5.25031010699411657681864936736, 6.14797572370043070934174795386, 6.83482517945793104112583775173, 7.49269861957768744147744540121, 8.454354936382086483114900281001

Graph of the $Z$-function along the critical line