Properties

Label 2-4704-1.1-c1-0-33
Degree $2$
Conductor $4704$
Sign $1$
Analytic cond. $37.5616$
Root an. cond. $6.12875$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3.04·5-s + 9-s − 3.93·11-s + 4.88·13-s + 3.04·15-s − 5.34·17-s − 2.30·19-s + 7.93·23-s + 4.25·25-s + 27-s + 5.55·29-s − 0.645·31-s − 3.93·33-s + 5.65·37-s + 4.88·39-s + 10.0·41-s − 8.91·43-s + 3.04·45-s − 6.61·47-s − 5.34·51-s + 1.25·53-s − 11.9·55-s − 2.30·57-s + 3.04·59-s − 2.97·61-s + 14.8·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.36·5-s + 0.333·9-s − 1.18·11-s + 1.35·13-s + 0.785·15-s − 1.29·17-s − 0.528·19-s + 1.65·23-s + 0.851·25-s + 0.192·27-s + 1.03·29-s − 0.115·31-s − 0.684·33-s + 0.929·37-s + 0.782·39-s + 1.57·41-s − 1.35·43-s + 0.453·45-s − 0.964·47-s − 0.748·51-s + 0.172·53-s − 1.61·55-s − 0.304·57-s + 0.396·59-s − 0.380·61-s + 1.84·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4704\)    =    \(2^{5} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(37.5616\)
Root analytic conductor: \(6.12875\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4704} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4704,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.249213725\)
\(L(\frac12)\) \(\approx\) \(3.249213725\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
good5 \( 1 - 3.04T + 5T^{2} \)
11 \( 1 + 3.93T + 11T^{2} \)
13 \( 1 - 4.88T + 13T^{2} \)
17 \( 1 + 5.34T + 17T^{2} \)
19 \( 1 + 2.30T + 19T^{2} \)
23 \( 1 - 7.93T + 23T^{2} \)
29 \( 1 - 5.55T + 29T^{2} \)
31 \( 1 + 0.645T + 31T^{2} \)
37 \( 1 - 5.65T + 37T^{2} \)
41 \( 1 - 10.0T + 41T^{2} \)
43 \( 1 + 8.91T + 43T^{2} \)
47 \( 1 + 6.61T + 47T^{2} \)
53 \( 1 - 1.25T + 53T^{2} \)
59 \( 1 - 3.04T + 59T^{2} \)
61 \( 1 + 2.97T + 61T^{2} \)
67 \( 1 - 13.5T + 67T^{2} \)
71 \( 1 - 13.5T + 71T^{2} \)
73 \( 1 - 4.67T + 73T^{2} \)
79 \( 1 - 1.05T + 79T^{2} \)
83 \( 1 - 8.60T + 83T^{2} \)
89 \( 1 - 4.85T + 89T^{2} \)
97 \( 1 - 18.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.442906910010638729512196016447, −7.71382769679460992180328481696, −6.50584039241657973672594562388, −6.41632736890333436956397703411, −5.28775670201575671193204214118, −4.74244104947422489230276713314, −3.62996158578987141425427802680, −2.64839904851103242357005260168, −2.13920170265743500435690199180, −1.00632302306326863466282982463, 1.00632302306326863466282982463, 2.13920170265743500435690199180, 2.64839904851103242357005260168, 3.62996158578987141425427802680, 4.74244104947422489230276713314, 5.28775670201575671193204214118, 6.41632736890333436956397703411, 6.50584039241657973672594562388, 7.71382769679460992180328481696, 8.442906910010638729512196016447

Graph of the $Z$-function along the critical line