Properties

Label 2-46e2-1.1-c1-0-34
Degree $2$
Conductor $2116$
Sign $-1$
Analytic cond. $16.8963$
Root an. cond. $4.11051$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·7-s − 2·9-s − 13-s + 6·17-s − 2·19-s − 2·21-s − 5·25-s − 5·27-s − 3·29-s + 5·31-s − 8·37-s − 39-s + 3·41-s − 8·43-s + 9·47-s − 3·49-s + 6·51-s − 6·53-s − 2·57-s − 12·59-s − 14·61-s + 4·63-s − 8·67-s − 15·71-s − 7·73-s − 5·75-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.755·7-s − 2/3·9-s − 0.277·13-s + 1.45·17-s − 0.458·19-s − 0.436·21-s − 25-s − 0.962·27-s − 0.557·29-s + 0.898·31-s − 1.31·37-s − 0.160·39-s + 0.468·41-s − 1.21·43-s + 1.31·47-s − 3/7·49-s + 0.840·51-s − 0.824·53-s − 0.264·57-s − 1.56·59-s − 1.79·61-s + 0.503·63-s − 0.977·67-s − 1.78·71-s − 0.819·73-s − 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2116 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2116 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2116\)    =    \(2^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(16.8963\)
Root analytic conductor: \(4.11051\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2116,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 \)
good3 \( 1 - T + p T^{2} \)
5 \( 1 + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 15 T + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.764372579299956656234992702503, −7.910283532428831686026568439904, −7.36215540469752961762928495977, −6.20382398868342034524355070702, −5.71274111334034856450397667213, −4.58604999215258623252929989753, −3.43650325767803320317918790111, −2.97513946462044282901176605228, −1.74242190941620479556994328523, 0, 1.74242190941620479556994328523, 2.97513946462044282901176605228, 3.43650325767803320317918790111, 4.58604999215258623252929989753, 5.71274111334034856450397667213, 6.20382398868342034524355070702, 7.36215540469752961762928495977, 7.910283532428831686026568439904, 8.764372579299956656234992702503

Graph of the $Z$-function along the critical line