Properties

Label 2-46800-1.1-c1-0-129
Degree $2$
Conductor $46800$
Sign $-1$
Analytic cond. $373.699$
Root an. cond. $19.3313$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 2·11-s − 13-s + 4·17-s + 2·19-s + 2·23-s − 6·29-s − 8·31-s + 6·37-s − 10·41-s + 4·43-s + 9·49-s − 6·53-s + 6·59-s + 2·61-s + 4·67-s − 12·71-s − 2·73-s − 8·77-s − 8·79-s − 12·83-s − 14·89-s − 4·91-s + 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 1.51·7-s − 0.603·11-s − 0.277·13-s + 0.970·17-s + 0.458·19-s + 0.417·23-s − 1.11·29-s − 1.43·31-s + 0.986·37-s − 1.56·41-s + 0.609·43-s + 9/7·49-s − 0.824·53-s + 0.781·59-s + 0.256·61-s + 0.488·67-s − 1.42·71-s − 0.234·73-s − 0.911·77-s − 0.900·79-s − 1.31·83-s − 1.48·89-s − 0.419·91-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(46800\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(373.699\)
Root analytic conductor: \(19.3313\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 46800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.65694720169628, −14.45408731877950, −14.03953913126136, −13.13846046495677, −12.96156445692564, −12.23696273575193, −11.63100766959262, −11.24019931315008, −10.90770209301804, −10.01677255676058, −9.878884284471497, −8.886046558413451, −8.623399264993786, −7.837176311097393, −7.476780408035060, −7.185809531370579, −6.105281322382366, −5.526863106452749, −5.140720283227583, −4.617614480652156, −3.846307732415879, −3.208279513858964, −2.410679753351037, −1.707810915156248, −1.138549914690416, 0, 1.138549914690416, 1.707810915156248, 2.410679753351037, 3.208279513858964, 3.846307732415879, 4.617614480652156, 5.140720283227583, 5.526863106452749, 6.105281322382366, 7.185809531370579, 7.476780408035060, 7.837176311097393, 8.623399264993786, 8.886046558413451, 9.878884284471497, 10.01677255676058, 10.90770209301804, 11.24019931315008, 11.63100766959262, 12.23696273575193, 12.96156445692564, 13.13846046495677, 14.03953913126136, 14.45408731877950, 14.65694720169628

Graph of the $Z$-function along the critical line