Properties

Label 2-4680-5.4-c1-0-15
Degree $2$
Conductor $4680$
Sign $-0.783 - 0.621i$
Analytic cond. $37.3699$
Root an. cond. $6.11309$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.75 + 1.38i)5-s − 1.50·11-s + i·13-s − 2.72i·17-s − 0.726·19-s + 4.72i·23-s + (1.14 + 4.86i)25-s − 7.55·29-s − 3.00·31-s + 5.00i·37-s − 5.78·41-s + 2.72i·43-s − 10.2i·47-s + 7·49-s + 7.55i·53-s + ⋯
L(s)  = 1  + (0.783 + 0.621i)5-s − 0.453·11-s + 0.277i·13-s − 0.661i·17-s − 0.166·19-s + 0.985i·23-s + (0.228 + 0.973i)25-s − 1.40·29-s − 0.540·31-s + 0.823i·37-s − 0.903·41-s + 0.415i·43-s − 1.49i·47-s + 49-s + 1.03i·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.783 - 0.621i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.783 - 0.621i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4680\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $-0.783 - 0.621i$
Analytic conductor: \(37.3699\)
Root analytic conductor: \(6.11309\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4680} (2809, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4680,\ (\ :1/2),\ -0.783 - 0.621i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.098159397\)
\(L(\frac12)\) \(\approx\) \(1.098159397\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (-1.75 - 1.38i)T \)
13 \( 1 - iT \)
good7 \( 1 - 7T^{2} \)
11 \( 1 + 1.50T + 11T^{2} \)
17 \( 1 + 2.72iT - 17T^{2} \)
19 \( 1 + 0.726T + 19T^{2} \)
23 \( 1 - 4.72iT - 23T^{2} \)
29 \( 1 + 7.55T + 29T^{2} \)
31 \( 1 + 3.00T + 31T^{2} \)
37 \( 1 - 5.00iT - 37T^{2} \)
41 \( 1 + 5.78T + 41T^{2} \)
43 \( 1 - 2.72iT - 43T^{2} \)
47 \( 1 + 10.2iT - 47T^{2} \)
53 \( 1 - 7.55iT - 53T^{2} \)
59 \( 1 + 12.5T + 59T^{2} \)
61 \( 1 - 6.28T + 61T^{2} \)
67 \( 1 - 12.5iT - 67T^{2} \)
71 \( 1 + 4.77T + 71T^{2} \)
73 \( 1 - 12.0iT - 73T^{2} \)
79 \( 1 + 5.27T + 79T^{2} \)
83 \( 1 + 7.78iT - 83T^{2} \)
89 \( 1 - 1.78T + 89T^{2} \)
97 \( 1 - 6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.759461530740780467180565002304, −7.62723007256731898107850275040, −7.21348383142416693559525341412, −6.42591721172297187669787477953, −5.60021254918280908032851939676, −5.14440111942479451691307537530, −3.99632613537478789566895332304, −3.14935217996270840335666641041, −2.32376218571008333153546126415, −1.43977903962926244005598572791, 0.27553392848357052012657172700, 1.61642080019442197313070869995, 2.34458374553479956325734422953, 3.43492733731255321985367912248, 4.37472819897967762719263278948, 5.14038688791482945576165117922, 5.81549909634357433015035795755, 6.39946989738521429270424756177, 7.38362675912891075622090017153, 8.067280939904542458198515079497

Graph of the $Z$-function along the critical line