Properties

Label 2-4650-5.4-c1-0-59
Degree $2$
Conductor $4650$
Sign $0.447 - 0.894i$
Analytic cond. $37.1304$
Root an. cond. $6.09347$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + i·3-s − 4-s − 6-s + 2.56i·7-s i·8-s − 9-s + 2.56·11-s i·12-s − 2i·13-s − 2.56·14-s + 16-s − 3.12i·17-s i·18-s + 7.68·19-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.577i·3-s − 0.5·4-s − 0.408·6-s + 0.968i·7-s − 0.353i·8-s − 0.333·9-s + 0.772·11-s − 0.288i·12-s − 0.554i·13-s − 0.684·14-s + 0.250·16-s − 0.757i·17-s − 0.235i·18-s + 1.76·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 31\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(37.1304\)
Root analytic conductor: \(6.09347\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4650} (3349, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4650,\ (\ :1/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.911338867\)
\(L(\frac12)\) \(\approx\) \(1.911338867\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 - iT \)
5 \( 1 \)
31 \( 1 - T \)
good7 \( 1 - 2.56iT - 7T^{2} \)
11 \( 1 - 2.56T + 11T^{2} \)
13 \( 1 + 2iT - 13T^{2} \)
17 \( 1 + 3.12iT - 17T^{2} \)
19 \( 1 - 7.68T + 19T^{2} \)
23 \( 1 + 1.43iT - 23T^{2} \)
29 \( 1 + 7.12T + 29T^{2} \)
37 \( 1 + 3.12iT - 37T^{2} \)
41 \( 1 - 7.12T + 41T^{2} \)
43 \( 1 + 12.8iT - 43T^{2} \)
47 \( 1 - 5.12iT - 47T^{2} \)
53 \( 1 + 7.43iT - 53T^{2} \)
59 \( 1 - 13.1T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + 15.3iT - 67T^{2} \)
71 \( 1 + 7.68T + 71T^{2} \)
73 \( 1 - 10.8iT - 73T^{2} \)
79 \( 1 - 4.31T + 79T^{2} \)
83 \( 1 + 14.2iT - 83T^{2} \)
89 \( 1 - 13.6T + 89T^{2} \)
97 \( 1 + 6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.539874926205176287046220884749, −7.61850490335299997950121477703, −7.09685032518647667588844324737, −6.07693143808130644139031888613, −5.46939516065669946944520553818, −5.04121553231473481601930658221, −3.93805618749383463815397868393, −3.26092895629926949272166384959, −2.22282443393755612369413455493, −0.69339981519109724514374122871, 0.959054634563096058020569026454, 1.51204612730515605206824358824, 2.67415892373530616426787958422, 3.68828068135981655495204589273, 4.12487037964941697116975643156, 5.19643992305739386259010314904, 6.00799539325854842257781910292, 6.86435719330280045372485413156, 7.48924980060939509274298621947, 8.091775877390436927965937711106

Graph of the $Z$-function along the critical line