L(s) = 1 | − i·2-s − i·3-s − 4-s − 6-s + 4i·7-s + i·8-s − 9-s − 4·11-s + i·12-s − 2i·13-s + 4·14-s + 16-s + 2i·17-s + i·18-s − 4·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.577i·3-s − 0.5·4-s − 0.408·6-s + 1.51i·7-s + 0.353i·8-s − 0.333·9-s − 1.20·11-s + 0.288i·12-s − 0.554i·13-s + 1.06·14-s + 0.250·16-s + 0.485i·17-s + 0.235i·18-s − 0.917·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.080969779\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.080969779\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 31 | \( 1 + T \) |
good | 7 | \( 1 - 4iT - 7T^{2} \) |
| 11 | \( 1 + 4T + 11T^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 17 | \( 1 - 2iT - 17T^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 + 4iT - 23T^{2} \) |
| 29 | \( 1 - 2T + 29T^{2} \) |
| 37 | \( 1 + 6iT - 37T^{2} \) |
| 41 | \( 1 - 10T + 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 - 8iT - 47T^{2} \) |
| 53 | \( 1 - 6iT - 53T^{2} \) |
| 59 | \( 1 + 8T + 59T^{2} \) |
| 61 | \( 1 - 10T + 61T^{2} \) |
| 67 | \( 1 + 12iT - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + 14iT - 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + 4iT - 83T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + 6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.022034066296966564146756463756, −7.73997882823514993689838467110, −6.36120002142041072559448162399, −5.89798258113482087571171974761, −5.15851472978656081536133065093, −4.35348170402238053517335743892, −3.06142356309532815642618560495, −2.53050988853198620136101480404, −1.86814498157576651718195197531, −0.38996351335477283426337970550,
0.812648249560500697296726980955, 2.34288383281389928116130857484, 3.52132930027113168396251459676, 4.15747629675926135435545382868, 4.85697016481569259983874591109, 5.51165096256350137043810090187, 6.51048945565580877858949820364, 7.12948124301263205297912561495, 7.75475318147133919743262546715, 8.394022292481085227518729019548