Properties

Label 2-4650-1.1-c1-0-0
Degree $2$
Conductor $4650$
Sign $1$
Analytic cond. $37.1304$
Root an. cond. $6.09347$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 2·7-s − 8-s + 9-s − 0.470·11-s − 12-s − 6.47·13-s + 2·14-s + 16-s − 7.04·17-s − 18-s − 7.04·19-s + 2·21-s + 0.470·22-s − 6.94·23-s + 24-s + 6.47·26-s − 27-s − 2·28-s − 6.94·29-s − 31-s − 32-s + 0.470·33-s + 7.04·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.408·6-s − 0.755·7-s − 0.353·8-s + 0.333·9-s − 0.141·11-s − 0.288·12-s − 1.79·13-s + 0.534·14-s + 0.250·16-s − 1.70·17-s − 0.235·18-s − 1.61·19-s + 0.436·21-s + 0.100·22-s − 1.44·23-s + 0.204·24-s + 1.26·26-s − 0.192·27-s − 0.377·28-s − 1.28·29-s − 0.179·31-s − 0.176·32-s + 0.0819·33-s + 1.20·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(37.1304\)
Root analytic conductor: \(6.09347\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1134277674\)
\(L(\frac12)\) \(\approx\) \(0.1134277674\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
31 \( 1 + T \)
good7 \( 1 + 2T + 7T^{2} \)
11 \( 1 + 0.470T + 11T^{2} \)
13 \( 1 + 6.47T + 13T^{2} \)
17 \( 1 + 7.04T + 17T^{2} \)
19 \( 1 + 7.04T + 19T^{2} \)
23 \( 1 + 6.94T + 23T^{2} \)
29 \( 1 + 6.94T + 29T^{2} \)
37 \( 1 - 1.78T + 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 - 0.210T + 43T^{2} \)
47 \( 1 - 7.04T + 47T^{2} \)
53 \( 1 - 3.15T + 53T^{2} \)
59 \( 1 + 7.15T + 59T^{2} \)
61 \( 1 - 11.2T + 61T^{2} \)
67 \( 1 - 8.26T + 67T^{2} \)
71 \( 1 - 0.260T + 71T^{2} \)
73 \( 1 + 11.8T + 73T^{2} \)
79 \( 1 + 1.89T + 79T^{2} \)
83 \( 1 - 11.7T + 83T^{2} \)
89 \( 1 - 12.0T + 89T^{2} \)
97 \( 1 - 3.52T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.296798131607961280086353994881, −7.54279158825487356898408327384, −6.83359485348203258374259818153, −6.34483667576828508476832043473, −5.54611696313498187488460700140, −4.55487493926639681205846655531, −3.89153613793978506193382659687, −2.44900472588570954510904864135, −2.06610244894528914292120562700, −0.19583818587752804451851287562, 0.19583818587752804451851287562, 2.06610244894528914292120562700, 2.44900472588570954510904864135, 3.89153613793978506193382659687, 4.55487493926639681205846655531, 5.54611696313498187488460700140, 6.34483667576828508476832043473, 6.83359485348203258374259818153, 7.54279158825487356898408327384, 8.296798131607961280086353994881

Graph of the $Z$-function along the critical line