| L(s) = 1 | + (−0.963 − 0.963i)2-s + (−0.212 − 1.71i)3-s − 0.144i·4-s + (2.14 − 0.615i)5-s + (−1.45 + 1.86i)6-s + (0.630 − 0.630i)7-s + (−2.06 + 2.06i)8-s + (−2.90 + 0.731i)9-s + (−2.66 − 1.47i)10-s − 5.14i·11-s + (−0.248 + 0.0307i)12-s + (2.18 + 2.18i)13-s − 1.21·14-s + (−1.51 − 3.56i)15-s + 3.69·16-s + (−5.34 − 5.34i)17-s + ⋯ |
| L(s) = 1 | + (−0.681 − 0.681i)2-s + (−0.122 − 0.992i)3-s − 0.0722i·4-s + (0.961 − 0.275i)5-s + (−0.592 + 0.759i)6-s + (0.238 − 0.238i)7-s + (−0.730 + 0.730i)8-s + (−0.969 + 0.243i)9-s + (−0.842 − 0.467i)10-s − 1.55i·11-s + (−0.0716 + 0.00887i)12-s + (0.606 + 0.606i)13-s − 0.324·14-s + (−0.391 − 0.920i)15-s + 0.922·16-s + (−1.29 − 1.29i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 - 0.150i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.988 - 0.150i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.0705696 + 0.929362i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0705696 + 0.929362i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (0.212 + 1.71i)T \) |
| 5 | \( 1 + (-2.14 + 0.615i)T \) |
| 31 | \( 1 - T \) |
| good | 2 | \( 1 + (0.963 + 0.963i)T + 2iT^{2} \) |
| 7 | \( 1 + (-0.630 + 0.630i)T - 7iT^{2} \) |
| 11 | \( 1 + 5.14iT - 11T^{2} \) |
| 13 | \( 1 + (-2.18 - 2.18i)T + 13iT^{2} \) |
| 17 | \( 1 + (5.34 + 5.34i)T + 17iT^{2} \) |
| 19 | \( 1 + 0.608iT - 19T^{2} \) |
| 23 | \( 1 + (2.85 - 2.85i)T - 23iT^{2} \) |
| 29 | \( 1 - 4.66T + 29T^{2} \) |
| 37 | \( 1 + (2.43 - 2.43i)T - 37iT^{2} \) |
| 41 | \( 1 - 0.351iT - 41T^{2} \) |
| 43 | \( 1 + (-0.242 - 0.242i)T + 43iT^{2} \) |
| 47 | \( 1 + (6.60 + 6.60i)T + 47iT^{2} \) |
| 53 | \( 1 + (9.16 - 9.16i)T - 53iT^{2} \) |
| 59 | \( 1 - 14.0T + 59T^{2} \) |
| 61 | \( 1 + 1.43T + 61T^{2} \) |
| 67 | \( 1 + (-7.99 + 7.99i)T - 67iT^{2} \) |
| 71 | \( 1 + 8.14iT - 71T^{2} \) |
| 73 | \( 1 + (-7.92 - 7.92i)T + 73iT^{2} \) |
| 79 | \( 1 + 2.49iT - 79T^{2} \) |
| 83 | \( 1 + (-3.84 + 3.84i)T - 83iT^{2} \) |
| 89 | \( 1 - 4.88T + 89T^{2} \) |
| 97 | \( 1 + (2.39 - 2.39i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81099622555024402500357290805, −9.577866008205477952648453211931, −8.830200932848366624320653112581, −8.224097225294920868583249490092, −6.68864929233836400270635749041, −6.03963090454267016139285002182, −5.04194093826146225475739411516, −2.94313006950305199101546963816, −1.85306905730521446472877285158, −0.72714684751839076134513617199,
2.26748758621218316484141555600, 3.77671476515853430428957321026, 4.93678324872966533515786914406, 6.14373258347223637549552162478, 6.74905938666943334301471437849, 8.195325913842644040520408509191, 8.754625753724540591207552216331, 9.790205199449329429502805813236, 10.20185654362512605631519659646, 11.18184438520109017290460131922