| L(s) = 1 | + (1.36 + 1.36i)2-s + (0.324 − 1.70i)3-s + 1.70i·4-s + (−1.70 + 1.44i)5-s + (2.75 − 1.87i)6-s + (2.86 − 2.86i)7-s + (0.405 − 0.405i)8-s + (−2.78 − 1.10i)9-s + (−4.28 − 0.353i)10-s − 5.71i·11-s + (2.89 + 0.552i)12-s + (3.46 + 3.46i)13-s + 7.78·14-s + (1.90 + 3.37i)15-s + 4.50·16-s + (0.490 + 0.490i)17-s + ⋯ |
| L(s) = 1 | + (0.962 + 0.962i)2-s + (0.187 − 0.982i)3-s + 0.850i·4-s + (−0.762 + 0.646i)5-s + (1.12 − 0.764i)6-s + (1.08 − 1.08i)7-s + (0.143 − 0.143i)8-s + (−0.929 − 0.368i)9-s + (−1.35 − 0.111i)10-s − 1.72i·11-s + (0.835 + 0.159i)12-s + (0.959 + 0.959i)13-s + 2.08·14-s + (0.492 + 0.870i)15-s + 1.12·16-s + (0.119 + 0.119i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0389i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0389i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.41327 - 0.0470162i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.41327 - 0.0470162i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-0.324 + 1.70i)T \) |
| 5 | \( 1 + (1.70 - 1.44i)T \) |
| 31 | \( 1 - T \) |
| good | 2 | \( 1 + (-1.36 - 1.36i)T + 2iT^{2} \) |
| 7 | \( 1 + (-2.86 + 2.86i)T - 7iT^{2} \) |
| 11 | \( 1 + 5.71iT - 11T^{2} \) |
| 13 | \( 1 + (-3.46 - 3.46i)T + 13iT^{2} \) |
| 17 | \( 1 + (-0.490 - 0.490i)T + 17iT^{2} \) |
| 19 | \( 1 - 5.62iT - 19T^{2} \) |
| 23 | \( 1 + (3.70 - 3.70i)T - 23iT^{2} \) |
| 29 | \( 1 + 4.36T + 29T^{2} \) |
| 37 | \( 1 + (-2.13 + 2.13i)T - 37iT^{2} \) |
| 41 | \( 1 + 3.32iT - 41T^{2} \) |
| 43 | \( 1 + (0.639 + 0.639i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1.35 - 1.35i)T + 47iT^{2} \) |
| 53 | \( 1 + (2.53 - 2.53i)T - 53iT^{2} \) |
| 59 | \( 1 - 0.0212T + 59T^{2} \) |
| 61 | \( 1 + 2.98T + 61T^{2} \) |
| 67 | \( 1 + (10.3 - 10.3i)T - 67iT^{2} \) |
| 71 | \( 1 - 11.8iT - 71T^{2} \) |
| 73 | \( 1 + (7.20 + 7.20i)T + 73iT^{2} \) |
| 79 | \( 1 - 6.29iT - 79T^{2} \) |
| 83 | \( 1 + (-4.54 + 4.54i)T - 83iT^{2} \) |
| 89 | \( 1 + 5.57T + 89T^{2} \) |
| 97 | \( 1 + (-5.70 + 5.70i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.29788378637512209711102423541, −10.52052217215931529262538567438, −8.613509063804632806749051622224, −7.84534684696558664162932899339, −7.38714291246756859650381542352, −6.31616447430202865378050346924, −5.72124720215739233248216313346, −4.06747521254235140588143190154, −3.54114336158938212959148582807, −1.32635491084163946448312336722,
1.97846126613816560729261816191, 3.15085962612845321800592157489, 4.46379507819949615080932403637, 4.73973191594286837589656620084, 5.67191392979811326115894055863, 7.74736401163599973358402143815, 8.435083955117642405299520072858, 9.362502899659655601733424324498, 10.49013210970731950961976753587, 11.27219529211336979403685631134