| L(s) = 1 | + (1.04 + 1.04i)2-s + (−1.52 + 0.828i)3-s + 0.164i·4-s + (0.204 − 2.22i)5-s + (−2.44 − 0.720i)6-s + (−1.82 + 1.82i)7-s + (1.90 − 1.90i)8-s + (1.62 − 2.51i)9-s + (2.52 − 2.10i)10-s − 5.69i·11-s + (−0.136 − 0.250i)12-s + (4.14 + 4.14i)13-s − 3.80·14-s + (1.53 + 3.55i)15-s + 4.30·16-s + (−0.349 − 0.349i)17-s + ⋯ |
| L(s) = 1 | + (0.735 + 0.735i)2-s + (−0.878 + 0.478i)3-s + 0.0824i·4-s + (0.0915 − 0.995i)5-s + (−0.997 − 0.294i)6-s + (−0.690 + 0.690i)7-s + (0.675 − 0.675i)8-s + (0.542 − 0.839i)9-s + (0.799 − 0.665i)10-s − 1.71i·11-s + (−0.0394 − 0.0724i)12-s + (1.14 + 1.14i)13-s − 1.01·14-s + (0.395 + 0.918i)15-s + 1.07·16-s + (−0.0848 − 0.0848i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.146i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.989 + 0.146i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.53120 - 0.112502i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.53120 - 0.112502i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (1.52 - 0.828i)T \) |
| 5 | \( 1 + (-0.204 + 2.22i)T \) |
| 31 | \( 1 - T \) |
| good | 2 | \( 1 + (-1.04 - 1.04i)T + 2iT^{2} \) |
| 7 | \( 1 + (1.82 - 1.82i)T - 7iT^{2} \) |
| 11 | \( 1 + 5.69iT - 11T^{2} \) |
| 13 | \( 1 + (-4.14 - 4.14i)T + 13iT^{2} \) |
| 17 | \( 1 + (0.349 + 0.349i)T + 17iT^{2} \) |
| 19 | \( 1 + 4.02iT - 19T^{2} \) |
| 23 | \( 1 + (-3.77 + 3.77i)T - 23iT^{2} \) |
| 29 | \( 1 - 4.44T + 29T^{2} \) |
| 37 | \( 1 + (2.31 - 2.31i)T - 37iT^{2} \) |
| 41 | \( 1 - 7.89iT - 41T^{2} \) |
| 43 | \( 1 + (3.86 + 3.86i)T + 43iT^{2} \) |
| 47 | \( 1 + (7.41 + 7.41i)T + 47iT^{2} \) |
| 53 | \( 1 + (-2.50 + 2.50i)T - 53iT^{2} \) |
| 59 | \( 1 + 6.80T + 59T^{2} \) |
| 61 | \( 1 - 11.1T + 61T^{2} \) |
| 67 | \( 1 + (5.48 - 5.48i)T - 67iT^{2} \) |
| 71 | \( 1 - 1.37iT - 71T^{2} \) |
| 73 | \( 1 + (-4.49 - 4.49i)T + 73iT^{2} \) |
| 79 | \( 1 - 0.679iT - 79T^{2} \) |
| 83 | \( 1 + (-6.41 + 6.41i)T - 83iT^{2} \) |
| 89 | \( 1 + 8.86T + 89T^{2} \) |
| 97 | \( 1 + (-7.46 + 7.46i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22153385244195452704607392313, −10.14195739907137702495655051442, −9.065322944577650022011430423200, −8.550702456642997308124142651601, −6.60338353389652192115625074857, −6.28733947598311160422455060454, −5.36908230916638417294444398428, −4.61146282115914720550927553247, −3.49576588904632072069859564380, −0.927623691428764138122155577169,
1.68918555324991233221654288234, 3.11182993545953173665567661094, 4.07239180050328083955291257793, 5.27970438886410786343200417864, 6.38557717080120824612662338577, 7.23925082474659493384207895566, 7.945767494664779292350896611806, 9.903505337959337957584919665894, 10.48304262872107665216062918306, 11.06437933395008082355210287678