| L(s) = 1 | + (−0.450 − 0.450i)2-s + (−1.12 − 1.31i)3-s − 1.59i·4-s + (−1.42 + 1.72i)5-s + (−0.0827 + 1.09i)6-s + (0.166 − 0.166i)7-s + (−1.61 + 1.61i)8-s + (−0.449 + 2.96i)9-s + (1.41 − 0.132i)10-s + 1.30i·11-s + (−2.09 + 1.80i)12-s + (−2.01 − 2.01i)13-s − 0.149·14-s + (3.87 − 0.0687i)15-s − 1.73·16-s + (0.865 + 0.865i)17-s + ⋯ |
| L(s) = 1 | + (−0.318 − 0.318i)2-s + (−0.652 − 0.758i)3-s − 0.797i·4-s + (−0.638 + 0.769i)5-s + (−0.0337 + 0.448i)6-s + (0.0629 − 0.0629i)7-s + (−0.572 + 0.572i)8-s + (−0.149 + 0.988i)9-s + (0.448 − 0.0417i)10-s + 0.394i·11-s + (−0.604 + 0.519i)12-s + (−0.559 − 0.559i)13-s − 0.0400·14-s + (0.999 − 0.0177i)15-s − 0.433·16-s + (0.209 + 0.209i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.510 - 0.859i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.510 - 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.335550 + 0.191006i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.335550 + 0.191006i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (1.12 + 1.31i)T \) |
| 5 | \( 1 + (1.42 - 1.72i)T \) |
| 31 | \( 1 - T \) |
| good | 2 | \( 1 + (0.450 + 0.450i)T + 2iT^{2} \) |
| 7 | \( 1 + (-0.166 + 0.166i)T - 7iT^{2} \) |
| 11 | \( 1 - 1.30iT - 11T^{2} \) |
| 13 | \( 1 + (2.01 + 2.01i)T + 13iT^{2} \) |
| 17 | \( 1 + (-0.865 - 0.865i)T + 17iT^{2} \) |
| 19 | \( 1 - 6.62iT - 19T^{2} \) |
| 23 | \( 1 + (3.49 - 3.49i)T - 23iT^{2} \) |
| 29 | \( 1 - 8.04T + 29T^{2} \) |
| 37 | \( 1 + (-1.16 + 1.16i)T - 37iT^{2} \) |
| 41 | \( 1 - 7.29iT - 41T^{2} \) |
| 43 | \( 1 + (-1.00 - 1.00i)T + 43iT^{2} \) |
| 47 | \( 1 + (5.02 + 5.02i)T + 47iT^{2} \) |
| 53 | \( 1 + (5.89 - 5.89i)T - 53iT^{2} \) |
| 59 | \( 1 + 13.9T + 59T^{2} \) |
| 61 | \( 1 - 3.40T + 61T^{2} \) |
| 67 | \( 1 + (6.19 - 6.19i)T - 67iT^{2} \) |
| 71 | \( 1 + 7.53iT - 71T^{2} \) |
| 73 | \( 1 + (5.11 + 5.11i)T + 73iT^{2} \) |
| 79 | \( 1 - 10.5iT - 79T^{2} \) |
| 83 | \( 1 + (11.2 - 11.2i)T - 83iT^{2} \) |
| 89 | \( 1 + 3.38T + 89T^{2} \) |
| 97 | \( 1 + (-4.83 + 4.83i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.14551185010754872080993905451, −10.35151912992183631273474588192, −9.840598819857605205033661216944, −8.201734946759053956137651504935, −7.60144897048751511749336713477, −6.46266795456649890988123838551, −5.77682266049448014309467641882, −4.55852945164061491914411582468, −2.84063510695134306005671742690, −1.47281368820940056538321809743,
0.29558915722647777343648546282, 3.04233709568080472278898875734, 4.28768137537508247800797936171, 4.89739240427185548438349114944, 6.32298262304108531434080649326, 7.24247295147484698677123631562, 8.380406054249377778993789521721, 8.970664167833059801990702607743, 9.819382062705300341145504099148, 11.03835667150189027730007099191