L(s) = 1 | + (−1.54 + 1.54i)2-s + (−1.05 − 1.37i)3-s − 2.79i·4-s + (0.879 − 2.05i)5-s + (3.76 + 0.496i)6-s + (0.747 + 0.747i)7-s + (1.23 + 1.23i)8-s + (−0.778 + 2.89i)9-s + (1.82 + 4.54i)10-s + 4.27i·11-s + (−3.84 + 2.94i)12-s + (1.44 − 1.44i)13-s − 2.31·14-s + (−3.75 + 0.958i)15-s + 1.76·16-s + (1.93 − 1.93i)17-s + ⋯ |
L(s) = 1 | + (−1.09 + 1.09i)2-s + (−0.608 − 0.793i)3-s − 1.39i·4-s + (0.393 − 0.919i)5-s + (1.53 + 0.202i)6-s + (0.282 + 0.282i)7-s + (0.437 + 0.437i)8-s + (−0.259 + 0.965i)9-s + (0.576 + 1.43i)10-s + 1.28i·11-s + (−1.11 + 0.851i)12-s + (0.400 − 0.400i)13-s − 0.619·14-s + (−0.968 + 0.247i)15-s + 0.441·16-s + (0.469 − 0.469i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.719 + 0.694i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.719 + 0.694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.555209 - 0.224080i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.555209 - 0.224080i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.05 + 1.37i)T \) |
| 5 | \( 1 + (-0.879 + 2.05i)T \) |
| 31 | \( 1 + T \) |
good | 2 | \( 1 + (1.54 - 1.54i)T - 2iT^{2} \) |
| 7 | \( 1 + (-0.747 - 0.747i)T + 7iT^{2} \) |
| 11 | \( 1 - 4.27iT - 11T^{2} \) |
| 13 | \( 1 + (-1.44 + 1.44i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1.93 + 1.93i)T - 17iT^{2} \) |
| 19 | \( 1 + 4.33iT - 19T^{2} \) |
| 23 | \( 1 + (5.15 + 5.15i)T + 23iT^{2} \) |
| 29 | \( 1 - 9.70T + 29T^{2} \) |
| 37 | \( 1 + (7.78 + 7.78i)T + 37iT^{2} \) |
| 41 | \( 1 + 0.692iT - 41T^{2} \) |
| 43 | \( 1 + (3.62 - 3.62i)T - 43iT^{2} \) |
| 47 | \( 1 + (-8.14 + 8.14i)T - 47iT^{2} \) |
| 53 | \( 1 + (-0.217 - 0.217i)T + 53iT^{2} \) |
| 59 | \( 1 + 4.28T + 59T^{2} \) |
| 61 | \( 1 - 2.56T + 61T^{2} \) |
| 67 | \( 1 + (1.87 + 1.87i)T + 67iT^{2} \) |
| 71 | \( 1 - 1.62iT - 71T^{2} \) |
| 73 | \( 1 + (-6.32 + 6.32i)T - 73iT^{2} \) |
| 79 | \( 1 + 3.86iT - 79T^{2} \) |
| 83 | \( 1 + (-5.30 - 5.30i)T + 83iT^{2} \) |
| 89 | \( 1 + 5.38T + 89T^{2} \) |
| 97 | \( 1 + (-5.06 - 5.06i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58260886592351754337659956008, −9.864906648715777068346077917365, −8.792300697287237860765502343612, −8.220746733528962627576279151682, −7.27890150914664019541028598820, −6.51865303864199005315392037699, −5.54176697436971239021452857020, −4.75022448866718419612978150867, −2.05813571897410936239320172151, −0.63110078072435954793133701461,
1.37653207385464333167888296743, 3.08023595071142926384801841402, 3.83551097308456798785764548260, 5.61864514723940623618942976166, 6.38054751687706150688607459782, 7.912685548403832803774987034804, 8.739982486455971130383255851786, 9.773232751967160992986230825157, 10.36744930973315712235253532335, 10.85282638207367302083757568556