| L(s) = 1 | + (0.450 − 0.450i)2-s + (−0.451 + 1.67i)3-s + 1.59i·4-s + (1.55 − 1.60i)5-s + (0.549 + 0.955i)6-s + (3.64 + 3.64i)7-s + (1.61 + 1.61i)8-s + (−2.59 − 1.50i)9-s + (−0.0230 − 1.42i)10-s − 5.56i·11-s + (−2.66 − 0.719i)12-s + (0.744 − 0.744i)13-s + 3.27·14-s + (1.98 + 3.32i)15-s − 1.73·16-s + (−2.78 + 2.78i)17-s + ⋯ |
| L(s) = 1 | + (0.318 − 0.318i)2-s + (−0.260 + 0.965i)3-s + 0.797i·4-s + (0.695 − 0.718i)5-s + (0.224 + 0.390i)6-s + (1.37 + 1.37i)7-s + (0.572 + 0.572i)8-s + (−0.864 − 0.503i)9-s + (−0.00728 − 0.450i)10-s − 1.67i·11-s + (−0.769 − 0.207i)12-s + (0.206 − 0.206i)13-s + 0.876·14-s + (0.512 + 0.858i)15-s − 0.433·16-s + (−0.674 + 0.674i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.461 - 0.887i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.461 - 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.61242 + 0.979290i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.61242 + 0.979290i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (0.451 - 1.67i)T \) |
| 5 | \( 1 + (-1.55 + 1.60i)T \) |
| 31 | \( 1 + T \) |
| good | 2 | \( 1 + (-0.450 + 0.450i)T - 2iT^{2} \) |
| 7 | \( 1 + (-3.64 - 3.64i)T + 7iT^{2} \) |
| 11 | \( 1 + 5.56iT - 11T^{2} \) |
| 13 | \( 1 + (-0.744 + 0.744i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.78 - 2.78i)T - 17iT^{2} \) |
| 19 | \( 1 - 4.67iT - 19T^{2} \) |
| 23 | \( 1 + (-1.93 - 1.93i)T + 23iT^{2} \) |
| 29 | \( 1 + 0.0153T + 29T^{2} \) |
| 37 | \( 1 + (5.59 + 5.59i)T + 37iT^{2} \) |
| 41 | \( 1 - 0.377iT - 41T^{2} \) |
| 43 | \( 1 + (-5.72 + 5.72i)T - 43iT^{2} \) |
| 47 | \( 1 + (-1.44 + 1.44i)T - 47iT^{2} \) |
| 53 | \( 1 + (2.79 + 2.79i)T + 53iT^{2} \) |
| 59 | \( 1 + 10.3T + 59T^{2} \) |
| 61 | \( 1 - 5.46T + 61T^{2} \) |
| 67 | \( 1 + (2.34 + 2.34i)T + 67iT^{2} \) |
| 71 | \( 1 - 0.837iT - 71T^{2} \) |
| 73 | \( 1 + (-1.19 + 1.19i)T - 73iT^{2} \) |
| 79 | \( 1 + 7.83iT - 79T^{2} \) |
| 83 | \( 1 + (-0.130 - 0.130i)T + 83iT^{2} \) |
| 89 | \( 1 - 0.746T + 89T^{2} \) |
| 97 | \( 1 + (-1.44 - 1.44i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.20388400159858101452428787885, −10.65202692151439069578789543410, −9.074263855753422329421525285948, −8.662114339446074310842041957026, −8.082429996092803970674268369172, −5.89898407477842979431156443356, −5.48169170592712103670155215506, −4.47634336742338965986212873819, −3.32401558682667184764004573384, −1.98230347726081177276136617821,
1.28334077875421265907359476036, 2.24694314119637027861759985350, 4.54493090098870259739676564478, 5.08382586148230292134289328896, 6.52177120722987264383976881962, 7.04893693391556284095093019409, 7.60277682366380499370821920309, 9.167742810159117144456935014805, 10.26998164730604154590886427942, 10.90085973653846879535716273706