| L(s) = 1 | + (−1.74 + 1.74i)2-s + (1.27 + 1.17i)3-s − 4.05i·4-s + (0.384 + 2.20i)5-s + (−4.25 + 0.181i)6-s + (1.30 + 1.30i)7-s + (3.58 + 3.58i)8-s + (0.254 + 2.98i)9-s + (−4.50 − 3.16i)10-s + 2.55i·11-s + (4.75 − 5.17i)12-s + (2.37 − 2.37i)13-s − 4.53·14-s + (−2.09 + 3.26i)15-s − 4.34·16-s + (3.38 − 3.38i)17-s + ⋯ |
| L(s) = 1 | + (−1.23 + 1.23i)2-s + (0.736 + 0.676i)3-s − 2.02i·4-s + (0.171 + 0.985i)5-s + (−1.73 + 0.0739i)6-s + (0.492 + 0.492i)7-s + (1.26 + 1.26i)8-s + (0.0848 + 0.996i)9-s + (−1.42 − 1.00i)10-s + 0.771i·11-s + (1.37 − 1.49i)12-s + (0.657 − 0.657i)13-s − 1.21·14-s + (−0.539 + 0.841i)15-s − 1.08·16-s + (0.821 − 0.821i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0165i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.0165i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.00845111 + 1.02335i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.00845111 + 1.02335i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-1.27 - 1.17i)T \) |
| 5 | \( 1 + (-0.384 - 2.20i)T \) |
| 31 | \( 1 - T \) |
| good | 2 | \( 1 + (1.74 - 1.74i)T - 2iT^{2} \) |
| 7 | \( 1 + (-1.30 - 1.30i)T + 7iT^{2} \) |
| 11 | \( 1 - 2.55iT - 11T^{2} \) |
| 13 | \( 1 + (-2.37 + 2.37i)T - 13iT^{2} \) |
| 17 | \( 1 + (-3.38 + 3.38i)T - 17iT^{2} \) |
| 19 | \( 1 - 4.69iT - 19T^{2} \) |
| 23 | \( 1 + (0.268 + 0.268i)T + 23iT^{2} \) |
| 29 | \( 1 + 5.68T + 29T^{2} \) |
| 37 | \( 1 + (2.80 + 2.80i)T + 37iT^{2} \) |
| 41 | \( 1 + 3.76iT - 41T^{2} \) |
| 43 | \( 1 + (-7.57 + 7.57i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.85 + 2.85i)T - 47iT^{2} \) |
| 53 | \( 1 + (-3.33 - 3.33i)T + 53iT^{2} \) |
| 59 | \( 1 + 12.5T + 59T^{2} \) |
| 61 | \( 1 + 7.79T + 61T^{2} \) |
| 67 | \( 1 + (4.02 + 4.02i)T + 67iT^{2} \) |
| 71 | \( 1 + 1.18iT - 71T^{2} \) |
| 73 | \( 1 + (-3.86 + 3.86i)T - 73iT^{2} \) |
| 79 | \( 1 - 4.46iT - 79T^{2} \) |
| 83 | \( 1 + (-4.02 - 4.02i)T + 83iT^{2} \) |
| 89 | \( 1 - 16.4T + 89T^{2} \) |
| 97 | \( 1 + (-13.6 - 13.6i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79293556783297163009871593971, −10.31529952645934507975395267411, −9.488632234408920506643627457202, −8.790551808657862374708270494542, −7.68927142556707211853726832676, −7.44557172471869059494160421339, −6.01454740864737710936861402971, −5.25204365723950755451193581447, −3.55690415239960541164334848931, −2.01038281850584836998431747017,
0.953535804042625335778095538269, 1.74805931138019680239826988959, 3.17244216466687800103715057560, 4.25736447770304102333788173838, 6.07654081504705076853312995905, 7.58577323081133389990893346992, 8.155175736409027237882057296383, 8.983290645161435957964044380318, 9.393209997664870257825760290382, 10.60590143055337380021109799671