Properties

Label 2-462-77.10-c1-0-6
Degree $2$
Conductor $462$
Sign $0.980 - 0.196i$
Analytic cond. $3.68908$
Root an. cond. $1.92070$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 − 0.866i)4-s + (2.83 − 1.63i)5-s − 0.999·6-s + (−2.54 − 0.732i)7-s + 0.999i·8-s + (0.499 + 0.866i)9-s + (−1.63 + 2.83i)10-s + (−0.569 + 3.26i)11-s + (0.866 − 0.499i)12-s + 5.12·13-s + (2.56 − 0.637i)14-s + 3.26·15-s + (−0.5 − 0.866i)16-s + (2.66 − 4.61i)17-s + ⋯
L(s)  = 1  + (−0.612 + 0.353i)2-s + (0.499 + 0.288i)3-s + (0.249 − 0.433i)4-s + (1.26 − 0.730i)5-s − 0.408·6-s + (−0.960 − 0.276i)7-s + 0.353i·8-s + (0.166 + 0.288i)9-s + (−0.516 + 0.895i)10-s + (−0.171 + 0.985i)11-s + (0.249 − 0.144i)12-s + 1.42·13-s + (0.686 − 0.170i)14-s + 0.843·15-s + (−0.125 − 0.216i)16-s + (0.645 − 1.11i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 - 0.196i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 462 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.980 - 0.196i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(462\)    =    \(2 \cdot 3 \cdot 7 \cdot 11\)
Sign: $0.980 - 0.196i$
Analytic conductor: \(3.68908\)
Root analytic conductor: \(1.92070\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{462} (241, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 462,\ (\ :1/2),\ 0.980 - 0.196i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.46417 + 0.144978i\)
\(L(\frac12)\) \(\approx\) \(1.46417 + 0.144978i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.866 - 0.5i)T \)
3 \( 1 + (-0.866 - 0.5i)T \)
7 \( 1 + (2.54 + 0.732i)T \)
11 \( 1 + (0.569 - 3.26i)T \)
good5 \( 1 + (-2.83 + 1.63i)T + (2.5 - 4.33i)T^{2} \)
13 \( 1 - 5.12T + 13T^{2} \)
17 \( 1 + (-2.66 + 4.61i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2.13 - 3.70i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (2.68 + 4.65i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + 4.77iT - 29T^{2} \)
31 \( 1 + (-5.59 - 3.23i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (1.06 + 1.84i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + 0.949T + 41T^{2} \)
43 \( 1 - 6.20iT - 43T^{2} \)
47 \( 1 + (-10.4 + 6.01i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (6.26 - 10.8i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (11.6 + 6.74i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (2.67 + 4.62i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (3.09 - 5.36i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 10.8T + 71T^{2} \)
73 \( 1 + (6.61 - 11.4i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (7.93 - 4.58i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 + 0.835T + 83T^{2} \)
89 \( 1 + (5.39 - 3.11i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 - 0.624iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.51829154838461929447713236999, −9.907261861573139833683363698769, −9.413350231501781212602934368924, −8.580991255914168527437479554518, −7.53804183760888394297571683023, −6.37318689862412237006283418868, −5.63739012744651089288283530843, −4.35759084302523012999076782888, −2.79200266224473730609400264202, −1.34126005121221608950942695869, 1.47651198208136099578193488988, 2.86583485038844440343791174153, 3.51668830354091546987526265962, 5.93996784474138668095271540096, 6.19286160310445649239350284121, 7.42939714793200174975231254522, 8.615691917577124862837645992875, 9.202979552247730375696948432053, 10.15535573647599534243614241789, 10.69780154035741041875617695155

Graph of the $Z$-function along the critical line