Properties

Label 2-4600-1.1-c1-0-90
Degree $2$
Conductor $4600$
Sign $-1$
Analytic cond. $36.7311$
Root an. cond. $6.06062$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 3·7-s + 9-s + 5·11-s − 5·13-s − 4·17-s + 19-s − 6·21-s − 23-s − 4·27-s + 9·29-s − 2·31-s + 10·33-s − 2·37-s − 10·39-s + 3·41-s − 7·43-s − 12·47-s + 2·49-s − 8·51-s + 12·53-s + 2·57-s − 6·59-s − 10·61-s − 3·63-s − 8·67-s − 2·69-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.13·7-s + 1/3·9-s + 1.50·11-s − 1.38·13-s − 0.970·17-s + 0.229·19-s − 1.30·21-s − 0.208·23-s − 0.769·27-s + 1.67·29-s − 0.359·31-s + 1.74·33-s − 0.328·37-s − 1.60·39-s + 0.468·41-s − 1.06·43-s − 1.75·47-s + 2/7·49-s − 1.12·51-s + 1.64·53-s + 0.264·57-s − 0.781·59-s − 1.28·61-s − 0.377·63-s − 0.977·67-s − 0.240·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4600\)    =    \(2^{3} \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(36.7311\)
Root analytic conductor: \(6.06062\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{4600} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 + 7 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 2 T + p T^{2} \)
73 \( 1 - T + p T^{2} \)
79 \( 1 + 11 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.133167489905966018865209731441, −7.08458420364805452776862694925, −6.75025560154426304611390206945, −5.94841026319287427664945572303, −4.76068229814268971566425078519, −4.03783849567142340119209459538, −3.18297579624874854812101142836, −2.64753609177892676628234600908, −1.61739068946046046710947299703, 0, 1.61739068946046046710947299703, 2.64753609177892676628234600908, 3.18297579624874854812101142836, 4.03783849567142340119209459538, 4.76068229814268971566425078519, 5.94841026319287427664945572303, 6.75025560154426304611390206945, 7.08458420364805452776862694925, 8.133167489905966018865209731441

Graph of the $Z$-function along the critical line