Properties

Label 2-4600-1.1-c1-0-65
Degree $2$
Conductor $4600$
Sign $-1$
Analytic cond. $36.7311$
Root an. cond. $6.06062$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.51·3-s + 3.49·7-s − 0.705·9-s − 4.35·11-s − 3.67·13-s + 5.18·17-s + 2.08·19-s − 5.29·21-s − 23-s + 5.61·27-s − 1.24·29-s + 4.82·31-s + 6.59·33-s − 1.04·37-s + 5.57·39-s + 9.05·41-s − 10.4·43-s − 12.8·47-s + 5.24·49-s − 7.85·51-s − 9.37·53-s − 3.15·57-s + 14.1·59-s − 9.29·61-s − 2.46·63-s − 4.44·67-s + 1.51·69-s + ⋯
L(s)  = 1  − 0.874·3-s + 1.32·7-s − 0.235·9-s − 1.31·11-s − 1.02·13-s + 1.25·17-s + 0.478·19-s − 1.15·21-s − 0.208·23-s + 1.08·27-s − 0.231·29-s + 0.866·31-s + 1.14·33-s − 0.171·37-s + 0.892·39-s + 1.41·41-s − 1.60·43-s − 1.87·47-s + 0.748·49-s − 1.09·51-s − 1.28·53-s − 0.418·57-s + 1.84·59-s − 1.19·61-s − 0.311·63-s − 0.542·67-s + 0.182·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4600\)    =    \(2^{3} \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(36.7311\)
Root analytic conductor: \(6.06062\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 + T \)
good3 \( 1 + 1.51T + 3T^{2} \)
7 \( 1 - 3.49T + 7T^{2} \)
11 \( 1 + 4.35T + 11T^{2} \)
13 \( 1 + 3.67T + 13T^{2} \)
17 \( 1 - 5.18T + 17T^{2} \)
19 \( 1 - 2.08T + 19T^{2} \)
29 \( 1 + 1.24T + 29T^{2} \)
31 \( 1 - 4.82T + 31T^{2} \)
37 \( 1 + 1.04T + 37T^{2} \)
41 \( 1 - 9.05T + 41T^{2} \)
43 \( 1 + 10.4T + 43T^{2} \)
47 \( 1 + 12.8T + 47T^{2} \)
53 \( 1 + 9.37T + 53T^{2} \)
59 \( 1 - 14.1T + 59T^{2} \)
61 \( 1 + 9.29T + 61T^{2} \)
67 \( 1 + 4.44T + 67T^{2} \)
71 \( 1 - 2.45T + 71T^{2} \)
73 \( 1 - 13.2T + 73T^{2} \)
79 \( 1 - 7.72T + 79T^{2} \)
83 \( 1 - 2.97T + 83T^{2} \)
89 \( 1 + 14.6T + 89T^{2} \)
97 \( 1 + 9.37T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.076095136951339655116744993306, −7.35567119327785571320391321357, −6.41183420975522593440368068226, −5.44329461307201075738243405460, −5.15940940147053003680079585787, −4.59846637137409192373723603804, −3.24235432881110504975201712335, −2.39409358524364160843291578051, −1.25684170420085087120493260866, 0, 1.25684170420085087120493260866, 2.39409358524364160843291578051, 3.24235432881110504975201712335, 4.59846637137409192373723603804, 5.15940940147053003680079585787, 5.44329461307201075738243405460, 6.41183420975522593440368068226, 7.35567119327785571320391321357, 8.076095136951339655116744993306

Graph of the $Z$-function along the critical line