Properties

Label 2-4600-1.1-c1-0-14
Degree $2$
Conductor $4600$
Sign $1$
Analytic cond. $36.7311$
Root an. cond. $6.06062$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.35·3-s + 1.14·7-s + 2.53·9-s − 2.32·11-s + 3.91·13-s − 3.47·17-s − 6.32·19-s − 2.70·21-s + 23-s + 1.09·27-s + 5.03·29-s + 1.11·31-s + 5.47·33-s − 3.00·37-s − 9.20·39-s + 1.50·41-s + 5.03·43-s − 2.76·47-s − 5.67·49-s + 8.18·51-s + 9.41·53-s + 14.8·57-s − 6.90·59-s + 3.95·61-s + 2.91·63-s + 0.705·67-s − 2.35·69-s + ⋯
L(s)  = 1  − 1.35·3-s + 0.434·7-s + 0.845·9-s − 0.702·11-s + 1.08·13-s − 0.843·17-s − 1.45·19-s − 0.590·21-s + 0.208·23-s + 0.210·27-s + 0.935·29-s + 0.200·31-s + 0.953·33-s − 0.494·37-s − 1.47·39-s + 0.234·41-s + 0.767·43-s − 0.403·47-s − 0.811·49-s + 1.14·51-s + 1.29·53-s + 1.97·57-s − 0.898·59-s + 0.505·61-s + 0.367·63-s + 0.0862·67-s − 0.283·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4600\)    =    \(2^{3} \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(36.7311\)
Root analytic conductor: \(6.06062\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8947259484\)
\(L(\frac12)\) \(\approx\) \(0.8947259484\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 - T \)
good3 \( 1 + 2.35T + 3T^{2} \)
7 \( 1 - 1.14T + 7T^{2} \)
11 \( 1 + 2.32T + 11T^{2} \)
13 \( 1 - 3.91T + 13T^{2} \)
17 \( 1 + 3.47T + 17T^{2} \)
19 \( 1 + 6.32T + 19T^{2} \)
29 \( 1 - 5.03T + 29T^{2} \)
31 \( 1 - 1.11T + 31T^{2} \)
37 \( 1 + 3.00T + 37T^{2} \)
41 \( 1 - 1.50T + 41T^{2} \)
43 \( 1 - 5.03T + 43T^{2} \)
47 \( 1 + 2.76T + 47T^{2} \)
53 \( 1 - 9.41T + 53T^{2} \)
59 \( 1 + 6.90T + 59T^{2} \)
61 \( 1 - 3.95T + 61T^{2} \)
67 \( 1 - 0.705T + 67T^{2} \)
71 \( 1 + 7.42T + 71T^{2} \)
73 \( 1 - 2.08T + 73T^{2} \)
79 \( 1 + 17.6T + 79T^{2} \)
83 \( 1 - 7.38T + 83T^{2} \)
89 \( 1 + 0.472T + 89T^{2} \)
97 \( 1 - 8.82T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.492952448935303423248787695464, −7.48414988823974201122673160706, −6.57721247827333608139812606880, −6.19402043677978040331750318678, −5.42649958662313118626661062000, −4.68452290340300597096281646398, −4.10770783067695857411551166022, −2.82751524799688973680976357093, −1.73739775869836256276129027999, −0.56595207839577096277145334085, 0.56595207839577096277145334085, 1.73739775869836256276129027999, 2.82751524799688973680976357093, 4.10770783067695857411551166022, 4.68452290340300597096281646398, 5.42649958662313118626661062000, 6.19402043677978040331750318678, 6.57721247827333608139812606880, 7.48414988823974201122673160706, 8.492952448935303423248787695464

Graph of the $Z$-function along the critical line