Properties

Label 2-460-1.1-c1-0-5
Degree $2$
Conductor $460$
Sign $-1$
Analytic cond. $3.67311$
Root an. cond. $1.91653$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 4·7-s − 2·9-s − 6·11-s − 13-s − 15-s + 2·19-s − 4·21-s + 23-s + 25-s − 5·27-s + 9·29-s + 5·31-s − 6·33-s + 4·35-s + 2·37-s − 39-s − 9·41-s − 4·43-s + 2·45-s − 3·47-s + 9·49-s − 6·53-s + 6·55-s + 2·57-s + 2·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 1.51·7-s − 2/3·9-s − 1.80·11-s − 0.277·13-s − 0.258·15-s + 0.458·19-s − 0.872·21-s + 0.208·23-s + 1/5·25-s − 0.962·27-s + 1.67·29-s + 0.898·31-s − 1.04·33-s + 0.676·35-s + 0.328·37-s − 0.160·39-s − 1.40·41-s − 0.609·43-s + 0.298·45-s − 0.437·47-s + 9/7·49-s − 0.824·53-s + 0.809·55-s + 0.264·57-s + 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 460 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 460 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(460\)    =    \(2^{2} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(3.67311\)
Root analytic conductor: \(1.91653\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 460,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
23 \( 1 - T \)
good3 \( 1 - T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.33856671397141294446394116657, −9.849864980953179954431405276055, −8.679990191761162872669871605663, −8.000688813935122029953556753775, −6.99430430163915185465805017201, −5.92357863230048957860893165957, −4.79044752996760793533244334252, −3.17509326722106237588778190877, −2.78340880808103884678025920457, 0, 2.78340880808103884678025920457, 3.17509326722106237588778190877, 4.79044752996760793533244334252, 5.92357863230048957860893165957, 6.99430430163915185465805017201, 8.000688813935122029953556753775, 8.679990191761162872669871605663, 9.849864980953179954431405276055, 10.33856671397141294446394116657

Graph of the $Z$-function along the critical line