L(s) = 1 | + (0.866 − 0.5i)2-s + i·8-s + (0.5 + 0.866i)16-s + i·17-s + 19-s + (0.866 + 0.5i)23-s + (0.5 − 0.866i)31-s + (0.5 + 0.866i)34-s + (0.866 − 0.5i)38-s + 0.999·46-s + (−1.73 + i)47-s + (0.5 − 0.866i)49-s − i·53-s + (0.5 + 0.866i)61-s − 0.999i·62-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + i·8-s + (0.5 + 0.866i)16-s + i·17-s + 19-s + (0.866 + 0.5i)23-s + (0.5 − 0.866i)31-s + (0.5 + 0.866i)34-s + (0.866 − 0.5i)38-s + 0.999·46-s + (−1.73 + i)47-s + (0.5 − 0.866i)49-s − i·53-s + (0.5 + 0.866i)61-s − 0.999i·62-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.751394981\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.751394981\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - iT - T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (1.73 - i)T + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + iT - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.420421703033903586561354694263, −8.492453054321139576679348808252, −7.896012935575039874768661860791, −6.95710419615014115956563553175, −5.91177179035889751102159309482, −5.22382278892486172834765675987, −4.37285045112079370579871923867, −3.54517670398687785612810433522, −2.78490642555186432135423112300, −1.59317375478164994171015730582,
1.10275190080177178849316301460, 2.78742674956118604913233033635, 3.61861895121589991387926485869, 4.76106910382948079635209442445, 5.12979085574737022115734054580, 6.07955915592130985422612419225, 6.88104858651300994514661298742, 7.42879372833329085781764846581, 8.516265375041101473954751608399, 9.378421935260178009171174395914