L(s) = 1 | + 1.63i·2-s − 0.669·4-s + 0.505i·7-s + 2.17i·8-s + 3.10·11-s + 6.23i·13-s − 0.825·14-s − 4.89·16-s − 6.10i·17-s + 5.57·19-s + 5.06i·22-s + 3.82i·23-s − 10.1·26-s − 0.338i·28-s − 2.45·29-s + ⋯ |
L(s) = 1 | + 1.15i·2-s − 0.334·4-s + 0.191i·7-s + 0.768i·8-s + 0.934·11-s + 1.73i·13-s − 0.220·14-s − 1.22·16-s − 1.47i·17-s + 1.27·19-s + 1.07i·22-s + 0.797i·23-s − 1.99·26-s − 0.0638i·28-s − 0.456·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.920688350\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.920688350\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 1.63iT - 2T^{2} \) |
| 7 | \( 1 - 0.505iT - 7T^{2} \) |
| 11 | \( 1 - 3.10T + 11T^{2} \) |
| 13 | \( 1 - 6.23iT - 13T^{2} \) |
| 17 | \( 1 + 6.10iT - 17T^{2} \) |
| 19 | \( 1 - 5.57T + 19T^{2} \) |
| 23 | \( 1 - 3.82iT - 23T^{2} \) |
| 29 | \( 1 + 2.45T + 29T^{2} \) |
| 31 | \( 1 - 4.22T + 31T^{2} \) |
| 37 | \( 1 - 6.72iT - 37T^{2} \) |
| 41 | \( 1 + 5.44T + 41T^{2} \) |
| 43 | \( 1 + 1.32iT - 43T^{2} \) |
| 47 | \( 1 + 3.70iT - 47T^{2} \) |
| 53 | \( 1 + 2.54iT - 53T^{2} \) |
| 59 | \( 1 + 2.88T + 59T^{2} \) |
| 61 | \( 1 + 2.84T + 61T^{2} \) |
| 67 | \( 1 - 2.40iT - 67T^{2} \) |
| 71 | \( 1 - 5.54T + 71T^{2} \) |
| 73 | \( 1 - 11.7iT - 73T^{2} \) |
| 79 | \( 1 + 3.40T + 79T^{2} \) |
| 83 | \( 1 - 13.9iT - 83T^{2} \) |
| 89 | \( 1 + 3.38T + 89T^{2} \) |
| 97 | \( 1 - 11.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.313845758537882002822121641334, −8.658029531172382700184778999345, −7.70637712566014949040932551075, −6.88778168837358551127769524564, −6.68630380065311129013695989227, −5.55347396633613289782871439938, −4.92140266173881322183223189813, −3.92880529227357721177855879555, −2.68505374313997770400563664893, −1.46261698546784323059281181563,
0.72575795276903801257747343921, 1.69143183919361226886144494268, 2.91769773678406536251495639913, 3.56803492592950249179983138441, 4.40330579365661897029433689559, 5.62189493455816455901493116862, 6.36375576129382308338160679636, 7.33999217938790386824635381114, 8.122397974260851623690740922285, 9.034348626760276112955625819774