Properties

Label 2-45e2-225.56-c0-0-1
Degree $2$
Conductor $2025$
Sign $0.813 - 0.582i$
Analytic cond. $1.01060$
Root an. cond. $1.00528$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.128 + 0.604i)2-s + (0.564 + 0.251i)4-s + (−0.207 − 0.978i)5-s + (−0.309 + 0.535i)7-s + (−0.587 + 0.809i)8-s + 0.618·10-s + (0.207 − 0.978i)11-s + (−0.283 − 0.255i)14-s + (0.587 − 0.809i)17-s + (0.809 + 0.587i)19-s + (0.128 − 0.604i)20-s + (0.564 + 0.251i)22-s + (0.743 + 0.669i)23-s + (−0.913 + 0.406i)25-s + (−0.309 + 0.224i)28-s + (1.60 − 0.169i)29-s + ⋯
L(s)  = 1  + (−0.128 + 0.604i)2-s + (0.564 + 0.251i)4-s + (−0.207 − 0.978i)5-s + (−0.309 + 0.535i)7-s + (−0.587 + 0.809i)8-s + 0.618·10-s + (0.207 − 0.978i)11-s + (−0.283 − 0.255i)14-s + (0.587 − 0.809i)17-s + (0.809 + 0.587i)19-s + (0.128 − 0.604i)20-s + (0.564 + 0.251i)22-s + (0.743 + 0.669i)23-s + (−0.913 + 0.406i)25-s + (−0.309 + 0.224i)28-s + (1.60 − 0.169i)29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.813 - 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.813 - 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2025\)    =    \(3^{4} \cdot 5^{2}\)
Sign: $0.813 - 0.582i$
Analytic conductor: \(1.01060\)
Root analytic conductor: \(1.00528\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2025} (431, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2025,\ (\ :0),\ 0.813 - 0.582i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.246741526\)
\(L(\frac12)\) \(\approx\) \(1.246741526\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (0.207 + 0.978i)T \)
good2 \( 1 + (0.128 - 0.604i)T + (-0.913 - 0.406i)T^{2} \)
7 \( 1 + (0.309 - 0.535i)T + (-0.5 - 0.866i)T^{2} \)
11 \( 1 + (-0.207 + 0.978i)T + (-0.913 - 0.406i)T^{2} \)
13 \( 1 + (0.913 - 0.406i)T^{2} \)
17 \( 1 + (-0.587 + 0.809i)T + (-0.309 - 0.951i)T^{2} \)
19 \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \)
23 \( 1 + (-0.743 - 0.669i)T + (0.104 + 0.994i)T^{2} \)
29 \( 1 + (-1.60 + 0.169i)T + (0.978 - 0.207i)T^{2} \)
31 \( 1 + (-0.978 - 0.207i)T^{2} \)
37 \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \)
41 \( 1 + (-0.207 - 0.978i)T + (-0.913 + 0.406i)T^{2} \)
43 \( 1 + (-0.5 - 0.866i)T^{2} \)
47 \( 1 + (1.60 - 0.169i)T + (0.978 - 0.207i)T^{2} \)
53 \( 1 + (-0.363 - 0.5i)T + (-0.309 + 0.951i)T^{2} \)
59 \( 1 + (-0.913 + 0.406i)T^{2} \)
61 \( 1 + (-0.978 - 0.207i)T + (0.913 + 0.406i)T^{2} \)
67 \( 1 + (0.0646 - 0.614i)T + (-0.978 - 0.207i)T^{2} \)
71 \( 1 + (0.951 + 1.30i)T + (-0.309 + 0.951i)T^{2} \)
73 \( 1 + (-0.809 + 0.587i)T^{2} \)
79 \( 1 + (0.169 + 1.60i)T + (-0.978 + 0.207i)T^{2} \)
83 \( 1 + (-0.251 - 0.564i)T + (-0.669 + 0.743i)T^{2} \)
89 \( 1 + (0.951 - 0.309i)T + (0.809 - 0.587i)T^{2} \)
97 \( 1 + (0.104 + 0.994i)T + (-0.978 + 0.207i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.171373310473631783523689953511, −8.548790917868186040781895708888, −7.86237030117663466470499334267, −7.20800146141849895358899754648, −6.10544983940946996533171556049, −5.65727390921799195013897188255, −4.79653612045647811908818048476, −3.46739954073648725284242420628, −2.74131515060156783310259005234, −1.20235148056600976201719701431, 1.22280360969040581174344602390, 2.48641219155104985266917881331, 3.19067069317202326675576021001, 4.07551421889459652263391663819, 5.22715856104876937130031706793, 6.54680661354432753305438216991, 6.72325887843703121446817824426, 7.51464711758223784648651501467, 8.493689794821401502427148535247, 9.740831163153455801141446669571

Graph of the $Z$-function along the critical line