| L(s) = 1 | + (−0.128 + 0.604i)2-s + (0.564 + 0.251i)4-s + (−0.207 − 0.978i)5-s + (−0.309 + 0.535i)7-s + (−0.587 + 0.809i)8-s + 0.618·10-s + (0.207 − 0.978i)11-s + (−0.283 − 0.255i)14-s + (0.587 − 0.809i)17-s + (0.809 + 0.587i)19-s + (0.128 − 0.604i)20-s + (0.564 + 0.251i)22-s + (0.743 + 0.669i)23-s + (−0.913 + 0.406i)25-s + (−0.309 + 0.224i)28-s + (1.60 − 0.169i)29-s + ⋯ |
| L(s) = 1 | + (−0.128 + 0.604i)2-s + (0.564 + 0.251i)4-s + (−0.207 − 0.978i)5-s + (−0.309 + 0.535i)7-s + (−0.587 + 0.809i)8-s + 0.618·10-s + (0.207 − 0.978i)11-s + (−0.283 − 0.255i)14-s + (0.587 − 0.809i)17-s + (0.809 + 0.587i)19-s + (0.128 − 0.604i)20-s + (0.564 + 0.251i)22-s + (0.743 + 0.669i)23-s + (−0.913 + 0.406i)25-s + (−0.309 + 0.224i)28-s + (1.60 − 0.169i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.813 - 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.813 - 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.246741526\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.246741526\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.207 + 0.978i)T \) |
| good | 2 | \( 1 + (0.128 - 0.604i)T + (-0.913 - 0.406i)T^{2} \) |
| 7 | \( 1 + (0.309 - 0.535i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.207 + 0.978i)T + (-0.913 - 0.406i)T^{2} \) |
| 13 | \( 1 + (0.913 - 0.406i)T^{2} \) |
| 17 | \( 1 + (-0.587 + 0.809i)T + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (-0.743 - 0.669i)T + (0.104 + 0.994i)T^{2} \) |
| 29 | \( 1 + (-1.60 + 0.169i)T + (0.978 - 0.207i)T^{2} \) |
| 31 | \( 1 + (-0.978 - 0.207i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.207 - 0.978i)T + (-0.913 + 0.406i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (1.60 - 0.169i)T + (0.978 - 0.207i)T^{2} \) |
| 53 | \( 1 + (-0.363 - 0.5i)T + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.913 + 0.406i)T^{2} \) |
| 61 | \( 1 + (-0.978 - 0.207i)T + (0.913 + 0.406i)T^{2} \) |
| 67 | \( 1 + (0.0646 - 0.614i)T + (-0.978 - 0.207i)T^{2} \) |
| 71 | \( 1 + (0.951 + 1.30i)T + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (0.169 + 1.60i)T + (-0.978 + 0.207i)T^{2} \) |
| 83 | \( 1 + (-0.251 - 0.564i)T + (-0.669 + 0.743i)T^{2} \) |
| 89 | \( 1 + (0.951 - 0.309i)T + (0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + (0.104 + 0.994i)T + (-0.978 + 0.207i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.171373310473631783523689953511, −8.548790917868186040781895708888, −7.86237030117663466470499334267, −7.20800146141849895358899754648, −6.10544983940946996533171556049, −5.65727390921799195013897188255, −4.79653612045647811908818048476, −3.46739954073648725284242420628, −2.74131515060156783310259005234, −1.20235148056600976201719701431,
1.22280360969040581174344602390, 2.48641219155104985266917881331, 3.19067069317202326675576021001, 4.07551421889459652263391663819, 5.22715856104876937130031706793, 6.54680661354432753305438216991, 6.72325887843703121446817824426, 7.51464711758223784648651501467, 8.493689794821401502427148535247, 9.740831163153455801141446669571