Properties

Label 2-45e2-1.1-c1-0-63
Degree $2$
Conductor $2025$
Sign $-1$
Analytic cond. $16.1697$
Root an. cond. $4.02115$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.63·2-s + 0.669·4-s − 0.505·7-s − 2.17·8-s − 3.10·11-s + 6.23·13-s − 0.825·14-s − 4.89·16-s − 6.10·17-s − 5.57·19-s − 5.06·22-s − 3.82·23-s + 10.1·26-s − 0.338·28-s − 2.45·29-s + 4.22·31-s − 3.64·32-s − 9.96·34-s − 6.72·37-s − 9.10·38-s + 5.44·41-s − 1.32·43-s − 2.07·44-s − 6.24·46-s − 3.70·47-s − 6.74·49-s + 4.17·52-s + ⋯
L(s)  = 1  + 1.15·2-s + 0.334·4-s − 0.191·7-s − 0.768·8-s − 0.934·11-s + 1.73·13-s − 0.220·14-s − 1.22·16-s − 1.47·17-s − 1.27·19-s − 1.07·22-s − 0.797·23-s + 1.99·26-s − 0.0638·28-s − 0.456·29-s + 0.759·31-s − 0.643·32-s − 1.70·34-s − 1.10·37-s − 1.47·38-s + 0.849·41-s − 0.202·43-s − 0.312·44-s − 0.921·46-s − 0.540·47-s − 0.963·49-s + 0.578·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2025\)    =    \(3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(16.1697\)
Root analytic conductor: \(4.02115\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2025,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 - 1.63T + 2T^{2} \)
7 \( 1 + 0.505T + 7T^{2} \)
11 \( 1 + 3.10T + 11T^{2} \)
13 \( 1 - 6.23T + 13T^{2} \)
17 \( 1 + 6.10T + 17T^{2} \)
19 \( 1 + 5.57T + 19T^{2} \)
23 \( 1 + 3.82T + 23T^{2} \)
29 \( 1 + 2.45T + 29T^{2} \)
31 \( 1 - 4.22T + 31T^{2} \)
37 \( 1 + 6.72T + 37T^{2} \)
41 \( 1 - 5.44T + 41T^{2} \)
43 \( 1 + 1.32T + 43T^{2} \)
47 \( 1 + 3.70T + 47T^{2} \)
53 \( 1 - 2.54T + 53T^{2} \)
59 \( 1 + 2.88T + 59T^{2} \)
61 \( 1 + 2.84T + 61T^{2} \)
67 \( 1 + 2.40T + 67T^{2} \)
71 \( 1 + 5.54T + 71T^{2} \)
73 \( 1 - 11.7T + 73T^{2} \)
79 \( 1 - 3.40T + 79T^{2} \)
83 \( 1 + 13.9T + 83T^{2} \)
89 \( 1 + 3.38T + 89T^{2} \)
97 \( 1 + 11.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.619435463189463948327281363384, −8.155926296574400990936621145597, −6.75765279745755987891092972231, −6.24764819691354715417391266371, −5.53690214427135009988682711009, −4.52387506786879233897660104911, −3.96727593293977446718318660542, −3.01611593011597017748722025012, −1.98549575247243987578473931593, 0, 1.98549575247243987578473931593, 3.01611593011597017748722025012, 3.96727593293977446718318660542, 4.52387506786879233897660104911, 5.53690214427135009988682711009, 6.24764819691354715417391266371, 6.75765279745755987891092972231, 8.155926296574400990936621145597, 8.619435463189463948327281363384

Graph of the $Z$-function along the critical line