L(s) = 1 | + 1.63·2-s + 0.669·4-s − 0.505·7-s − 2.17·8-s − 3.10·11-s + 6.23·13-s − 0.825·14-s − 4.89·16-s − 6.10·17-s − 5.57·19-s − 5.06·22-s − 3.82·23-s + 10.1·26-s − 0.338·28-s − 2.45·29-s + 4.22·31-s − 3.64·32-s − 9.96·34-s − 6.72·37-s − 9.10·38-s + 5.44·41-s − 1.32·43-s − 2.07·44-s − 6.24·46-s − 3.70·47-s − 6.74·49-s + 4.17·52-s + ⋯ |
L(s) = 1 | + 1.15·2-s + 0.334·4-s − 0.191·7-s − 0.768·8-s − 0.934·11-s + 1.73·13-s − 0.220·14-s − 1.22·16-s − 1.47·17-s − 1.27·19-s − 1.07·22-s − 0.797·23-s + 1.99·26-s − 0.0638·28-s − 0.456·29-s + 0.759·31-s − 0.643·32-s − 1.70·34-s − 1.10·37-s − 1.47·38-s + 0.849·41-s − 0.202·43-s − 0.312·44-s − 0.921·46-s − 0.540·47-s − 0.963·49-s + 0.578·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 1.63T + 2T^{2} \) |
| 7 | \( 1 + 0.505T + 7T^{2} \) |
| 11 | \( 1 + 3.10T + 11T^{2} \) |
| 13 | \( 1 - 6.23T + 13T^{2} \) |
| 17 | \( 1 + 6.10T + 17T^{2} \) |
| 19 | \( 1 + 5.57T + 19T^{2} \) |
| 23 | \( 1 + 3.82T + 23T^{2} \) |
| 29 | \( 1 + 2.45T + 29T^{2} \) |
| 31 | \( 1 - 4.22T + 31T^{2} \) |
| 37 | \( 1 + 6.72T + 37T^{2} \) |
| 41 | \( 1 - 5.44T + 41T^{2} \) |
| 43 | \( 1 + 1.32T + 43T^{2} \) |
| 47 | \( 1 + 3.70T + 47T^{2} \) |
| 53 | \( 1 - 2.54T + 53T^{2} \) |
| 59 | \( 1 + 2.88T + 59T^{2} \) |
| 61 | \( 1 + 2.84T + 61T^{2} \) |
| 67 | \( 1 + 2.40T + 67T^{2} \) |
| 71 | \( 1 + 5.54T + 71T^{2} \) |
| 73 | \( 1 - 11.7T + 73T^{2} \) |
| 79 | \( 1 - 3.40T + 79T^{2} \) |
| 83 | \( 1 + 13.9T + 83T^{2} \) |
| 89 | \( 1 + 3.38T + 89T^{2} \) |
| 97 | \( 1 + 11.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.619435463189463948327281363384, −8.155926296574400990936621145597, −6.75765279745755987891092972231, −6.24764819691354715417391266371, −5.53690214427135009988682711009, −4.52387506786879233897660104911, −3.96727593293977446718318660542, −3.01611593011597017748722025012, −1.98549575247243987578473931593, 0,
1.98549575247243987578473931593, 3.01611593011597017748722025012, 3.96727593293977446718318660542, 4.52387506786879233897660104911, 5.53690214427135009988682711009, 6.24764819691354715417391266371, 6.75765279745755987891092972231, 8.155926296574400990936621145597, 8.619435463189463948327281363384