Properties

Label 2-45e2-1.1-c1-0-55
Degree $2$
Conductor $2025$
Sign $-1$
Analytic cond. $16.1697$
Root an. cond. $4.02115$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.47·2-s + 0.170·4-s + 3.86·7-s + 2.69·8-s − 0.260·11-s − 4.07·13-s − 5.69·14-s − 4.31·16-s − 3.26·17-s + 4.24·19-s + 0.383·22-s − 8.69·23-s + 6.00·26-s + 0.659·28-s − 4.22·29-s + 2.65·31-s + 0.961·32-s + 4.80·34-s − 2.27·37-s − 6.26·38-s − 5.64·41-s − 9.07·43-s − 0.0443·44-s + 12.8·46-s + 1.42·47-s + 7.94·49-s − 0.695·52-s + ⋯
L(s)  = 1  − 1.04·2-s + 0.0852·4-s + 1.46·7-s + 0.952·8-s − 0.0784·11-s − 1.13·13-s − 1.52·14-s − 1.07·16-s − 0.790·17-s + 0.974·19-s + 0.0817·22-s − 1.81·23-s + 1.17·26-s + 0.124·28-s − 0.784·29-s + 0.476·31-s + 0.170·32-s + 0.823·34-s − 0.374·37-s − 1.01·38-s − 0.881·41-s − 1.38·43-s − 0.00668·44-s + 1.88·46-s + 0.208·47-s + 1.13·49-s − 0.0964·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2025\)    =    \(3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(16.1697\)
Root analytic conductor: \(4.02115\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2025,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 1.47T + 2T^{2} \)
7 \( 1 - 3.86T + 7T^{2} \)
11 \( 1 + 0.260T + 11T^{2} \)
13 \( 1 + 4.07T + 13T^{2} \)
17 \( 1 + 3.26T + 17T^{2} \)
19 \( 1 - 4.24T + 19T^{2} \)
23 \( 1 + 8.69T + 23T^{2} \)
29 \( 1 + 4.22T + 29T^{2} \)
31 \( 1 - 2.65T + 31T^{2} \)
37 \( 1 + 2.27T + 37T^{2} \)
41 \( 1 + 5.64T + 41T^{2} \)
43 \( 1 + 9.07T + 43T^{2} \)
47 \( 1 - 1.42T + 47T^{2} \)
53 \( 1 + 11.3T + 53T^{2} \)
59 \( 1 - 7.12T + 59T^{2} \)
61 \( 1 - 2.52T + 61T^{2} \)
67 \( 1 - 11.2T + 67T^{2} \)
71 \( 1 - 8.38T + 71T^{2} \)
73 \( 1 - 0.403T + 73T^{2} \)
79 \( 1 + 3.04T + 79T^{2} \)
83 \( 1 + 4.58T + 83T^{2} \)
89 \( 1 + 7.17T + 89T^{2} \)
97 \( 1 - 3.11T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.596462851604463335111333849164, −8.091230196508658538285130038172, −7.55003984790632294327289400159, −6.71489873929404732546534868617, −5.32082535114291562647040008944, −4.82228336415293173970280906721, −3.90198070562548266410989640944, −2.27166334910496935078208113591, −1.51986526300393663371883431814, 0, 1.51986526300393663371883431814, 2.27166334910496935078208113591, 3.90198070562548266410989640944, 4.82228336415293173970280906721, 5.32082535114291562647040008944, 6.71489873929404732546534868617, 7.55003984790632294327289400159, 8.091230196508658538285130038172, 8.596462851604463335111333849164

Graph of the $Z$-function along the critical line