Properties

Label 2-45e2-1.1-c1-0-21
Degree $2$
Conductor $2025$
Sign $1$
Analytic cond. $16.1697$
Root an. cond. $4.02115$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.30·2-s − 0.302·4-s + 0.697·7-s − 3·8-s − 1.69·11-s + 3.30·13-s + 0.908·14-s − 3.30·16-s + 1.30·17-s + 7.21·19-s − 2.21·22-s − 3.90·23-s + 4.30·26-s − 0.211·28-s + 8.60·29-s − 6.21·31-s + 1.69·32-s + 1.69·34-s + 8.90·37-s + 9.39·38-s + 1.69·41-s + 9.30·43-s + 0.513·44-s − 5.09·46-s + 8.21·47-s − 6.51·49-s − 1.00·52-s + ⋯
L(s)  = 1  + 0.921·2-s − 0.151·4-s + 0.263·7-s − 1.06·8-s − 0.511·11-s + 0.916·13-s + 0.242·14-s − 0.825·16-s + 0.315·17-s + 1.65·19-s − 0.471·22-s − 0.814·23-s + 0.843·26-s − 0.0398·28-s + 1.59·29-s − 1.11·31-s + 0.300·32-s + 0.291·34-s + 1.46·37-s + 1.52·38-s + 0.265·41-s + 1.41·43-s + 0.0774·44-s − 0.750·46-s + 1.19·47-s − 0.930·49-s − 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2025\)    =    \(3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(16.1697\)
Root analytic conductor: \(4.02115\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2025,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.524776829\)
\(L(\frac12)\) \(\approx\) \(2.524776829\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 - 1.30T + 2T^{2} \)
7 \( 1 - 0.697T + 7T^{2} \)
11 \( 1 + 1.69T + 11T^{2} \)
13 \( 1 - 3.30T + 13T^{2} \)
17 \( 1 - 1.30T + 17T^{2} \)
19 \( 1 - 7.21T + 19T^{2} \)
23 \( 1 + 3.90T + 23T^{2} \)
29 \( 1 - 8.60T + 29T^{2} \)
31 \( 1 + 6.21T + 31T^{2} \)
37 \( 1 - 8.90T + 37T^{2} \)
41 \( 1 - 1.69T + 41T^{2} \)
43 \( 1 - 9.30T + 43T^{2} \)
47 \( 1 - 8.21T + 47T^{2} \)
53 \( 1 + 12.5T + 53T^{2} \)
59 \( 1 - 7.30T + 59T^{2} \)
61 \( 1 - 3.30T + 61T^{2} \)
67 \( 1 - 1.60T + 67T^{2} \)
71 \( 1 - 11.6T + 71T^{2} \)
73 \( 1 - 2.39T + 73T^{2} \)
79 \( 1 - 4.60T + 79T^{2} \)
83 \( 1 - 9T + 83T^{2} \)
89 \( 1 + 12T + 89T^{2} \)
97 \( 1 - 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.239237519441293871521255342653, −8.238573134005323466166479541866, −7.68366198725363219330179282207, −6.51159430598931659555008784983, −5.74617363931539656087311281631, −5.15194569520131981927564984877, −4.24039295146867036339107385486, −3.45763615800027137396861171501, −2.56327831467607934786761117001, −0.958443470869938674406594528062, 0.958443470869938674406594528062, 2.56327831467607934786761117001, 3.45763615800027137396861171501, 4.24039295146867036339107385486, 5.15194569520131981927564984877, 5.74617363931539656087311281631, 6.51159430598931659555008784983, 7.68366198725363219330179282207, 8.238573134005323466166479541866, 9.239237519441293871521255342653

Graph of the $Z$-function along the critical line