L(s) = 1 | − 2-s + 2.39·3-s + 4-s − 0.391·5-s − 2.39·6-s + 1.71·7-s − 8-s + 2.71·9-s + 0.391·10-s + 2.39·12-s − 3.71·13-s − 1.71·14-s − 0.935·15-s + 16-s − 5.43·17-s − 2.71·18-s + 19-s − 0.391·20-s + 4.11·21-s − 3.43·23-s − 2.39·24-s − 4.84·25-s + 3.71·26-s − 0.672·27-s + 1.71·28-s + 3.82·29-s + 0.935·30-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.38·3-s + 0.5·4-s − 0.175·5-s − 0.976·6-s + 0.649·7-s − 0.353·8-s + 0.906·9-s + 0.123·10-s + 0.690·12-s − 1.03·13-s − 0.459·14-s − 0.241·15-s + 0.250·16-s − 1.31·17-s − 0.640·18-s + 0.229·19-s − 0.0875·20-s + 0.896·21-s − 0.716·23-s − 0.488·24-s − 0.969·25-s + 0.729·26-s − 0.129·27-s + 0.324·28-s + 0.710·29-s + 0.170·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4598 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4598 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 11 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 3 | \( 1 - 2.39T + 3T^{2} \) |
| 5 | \( 1 + 0.391T + 5T^{2} \) |
| 7 | \( 1 - 1.71T + 7T^{2} \) |
| 13 | \( 1 + 3.71T + 13T^{2} \) |
| 17 | \( 1 + 5.43T + 17T^{2} \) |
| 23 | \( 1 + 3.43T + 23T^{2} \) |
| 29 | \( 1 - 3.82T + 29T^{2} \) |
| 31 | \( 1 + 3.06T + 31T^{2} \) |
| 37 | \( 1 + 4.65T + 37T^{2} \) |
| 41 | \( 1 + 1.06T + 41T^{2} \) |
| 43 | \( 1 - 3.73T + 43T^{2} \) |
| 47 | \( 1 + 8.22T + 47T^{2} \) |
| 53 | \( 1 + 1.21T + 53T^{2} \) |
| 59 | \( 1 - 12.4T + 59T^{2} \) |
| 61 | \( 1 + 2T + 61T^{2} \) |
| 67 | \( 1 + 1.71T + 67T^{2} \) |
| 71 | \( 1 - 1.04T + 71T^{2} \) |
| 73 | \( 1 + 13.6T + 73T^{2} \) |
| 79 | \( 1 + 13.0T + 79T^{2} \) |
| 83 | \( 1 + 8.51T + 83T^{2} \) |
| 89 | \( 1 - 17.6T + 89T^{2} \) |
| 97 | \( 1 + 4.65T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.177443340099812555899490115067, −7.44479315193929986518296679751, −6.93921448942075696543544491029, −5.87526749231239029101797718274, −4.81394445406642176678007515929, −4.05791483338553301230678509383, −3.10554416790168669617721398411, −2.26390144512762444245296381006, −1.71628795460907451386955005869, 0,
1.71628795460907451386955005869, 2.26390144512762444245296381006, 3.10554416790168669617721398411, 4.05791483338553301230678509383, 4.81394445406642176678007515929, 5.87526749231239029101797718274, 6.93921448942075696543544491029, 7.44479315193929986518296679751, 8.177443340099812555899490115067