Properties

Label 2-4598-1.1-c1-0-148
Degree $2$
Conductor $4598$
Sign $-1$
Analytic cond. $36.7152$
Root an. cond. $6.05930$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.39·3-s + 4-s − 0.391·5-s − 2.39·6-s + 1.71·7-s − 8-s + 2.71·9-s + 0.391·10-s + 2.39·12-s − 3.71·13-s − 1.71·14-s − 0.935·15-s + 16-s − 5.43·17-s − 2.71·18-s + 19-s − 0.391·20-s + 4.11·21-s − 3.43·23-s − 2.39·24-s − 4.84·25-s + 3.71·26-s − 0.672·27-s + 1.71·28-s + 3.82·29-s + 0.935·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.38·3-s + 0.5·4-s − 0.175·5-s − 0.976·6-s + 0.649·7-s − 0.353·8-s + 0.906·9-s + 0.123·10-s + 0.690·12-s − 1.03·13-s − 0.459·14-s − 0.241·15-s + 0.250·16-s − 1.31·17-s − 0.640·18-s + 0.229·19-s − 0.0875·20-s + 0.896·21-s − 0.716·23-s − 0.488·24-s − 0.969·25-s + 0.729·26-s − 0.129·27-s + 0.324·28-s + 0.710·29-s + 0.170·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4598 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4598 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4598\)    =    \(2 \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(36.7152\)
Root analytic conductor: \(6.05930\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4598,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
11 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 2.39T + 3T^{2} \)
5 \( 1 + 0.391T + 5T^{2} \)
7 \( 1 - 1.71T + 7T^{2} \)
13 \( 1 + 3.71T + 13T^{2} \)
17 \( 1 + 5.43T + 17T^{2} \)
23 \( 1 + 3.43T + 23T^{2} \)
29 \( 1 - 3.82T + 29T^{2} \)
31 \( 1 + 3.06T + 31T^{2} \)
37 \( 1 + 4.65T + 37T^{2} \)
41 \( 1 + 1.06T + 41T^{2} \)
43 \( 1 - 3.73T + 43T^{2} \)
47 \( 1 + 8.22T + 47T^{2} \)
53 \( 1 + 1.21T + 53T^{2} \)
59 \( 1 - 12.4T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 + 1.71T + 67T^{2} \)
71 \( 1 - 1.04T + 71T^{2} \)
73 \( 1 + 13.6T + 73T^{2} \)
79 \( 1 + 13.0T + 79T^{2} \)
83 \( 1 + 8.51T + 83T^{2} \)
89 \( 1 - 17.6T + 89T^{2} \)
97 \( 1 + 4.65T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.177443340099812555899490115067, −7.44479315193929986518296679751, −6.93921448942075696543544491029, −5.87526749231239029101797718274, −4.81394445406642176678007515929, −4.05791483338553301230678509383, −3.10554416790168669617721398411, −2.26390144512762444245296381006, −1.71628795460907451386955005869, 0, 1.71628795460907451386955005869, 2.26390144512762444245296381006, 3.10554416790168669617721398411, 4.05791483338553301230678509383, 4.81394445406642176678007515929, 5.87526749231239029101797718274, 6.93921448942075696543544491029, 7.44479315193929986518296679751, 8.177443340099812555899490115067

Graph of the $Z$-function along the critical line