L(s) = 1 | + 2-s − 3.30·3-s + 4-s + 1.30·5-s − 3.30·6-s + 2.30·7-s + 8-s + 7.90·9-s + 1.30·10-s − 3.30·12-s − 0.302·13-s + 2.30·14-s − 4.30·15-s + 16-s − 2.60·17-s + 7.90·18-s − 19-s + 1.30·20-s − 7.60·21-s − 8.60·23-s − 3.30·24-s − 3.30·25-s − 0.302·26-s − 16.2·27-s + 2.30·28-s + 4.69·29-s − 4.30·30-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.90·3-s + 0.5·4-s + 0.582·5-s − 1.34·6-s + 0.870·7-s + 0.353·8-s + 2.63·9-s + 0.411·10-s − 0.953·12-s − 0.0839·13-s + 0.615·14-s − 1.11·15-s + 0.250·16-s − 0.631·17-s + 1.86·18-s − 0.229·19-s + 0.291·20-s − 1.65·21-s − 1.79·23-s − 0.674·24-s − 0.660·25-s − 0.0593·26-s − 3.11·27-s + 0.435·28-s + 0.872·29-s − 0.785·30-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4598 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4598 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 11 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 3 | \( 1 + 3.30T + 3T^{2} \) |
| 5 | \( 1 - 1.30T + 5T^{2} \) |
| 7 | \( 1 - 2.30T + 7T^{2} \) |
| 13 | \( 1 + 0.302T + 13T^{2} \) |
| 17 | \( 1 + 2.60T + 17T^{2} \) |
| 23 | \( 1 + 8.60T + 23T^{2} \) |
| 29 | \( 1 - 4.69T + 29T^{2} \) |
| 31 | \( 1 - 0.302T + 31T^{2} \) |
| 37 | \( 1 + 9.21T + 37T^{2} \) |
| 41 | \( 1 - 6.90T + 41T^{2} \) |
| 43 | \( 1 + 11.9T + 43T^{2} \) |
| 47 | \( 1 + 6T + 47T^{2} \) |
| 53 | \( 1 + 3.39T + 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 3.21T + 61T^{2} \) |
| 67 | \( 1 - 11.5T + 67T^{2} \) |
| 71 | \( 1 + 13.3T + 71T^{2} \) |
| 73 | \( 1 + 4.60T + 73T^{2} \) |
| 79 | \( 1 - 5.81T + 79T^{2} \) |
| 83 | \( 1 + 10.6T + 83T^{2} \) |
| 89 | \( 1 + 2.60T + 89T^{2} \) |
| 97 | \( 1 - 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.69851203475497045286173525712, −6.85098900121693001421745282720, −6.25515810304723313731381613557, −5.77147233262827214693079606726, −4.98774941147231156275822313531, −4.58830060096391877825894587037, −3.73736176759141151028476772946, −2.09476324187039181284348221417, −1.48989443334990104529489706532, 0,
1.48989443334990104529489706532, 2.09476324187039181284348221417, 3.73736176759141151028476772946, 4.58830060096391877825894587037, 4.98774941147231156275822313531, 5.77147233262827214693079606726, 6.25515810304723313731381613557, 6.85098900121693001421745282720, 7.69851203475497045286173525712