Properties

Label 2-4560-1.1-c1-0-41
Degree $2$
Conductor $4560$
Sign $-1$
Analytic cond. $36.4117$
Root an. cond. $6.03421$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 1.41·7-s + 9-s − 6.24·11-s − 0.585·13-s + 15-s + 6.82·17-s + 19-s + 1.41·21-s + 3.65·23-s + 25-s − 27-s − 1.41·29-s + 8.82·31-s + 6.24·33-s + 1.41·35-s − 0.585·37-s + 0.585·39-s + 8.24·41-s − 3.75·43-s − 45-s − 3.65·47-s − 5·49-s − 6.82·51-s + 8·53-s + 6.24·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.534·7-s + 0.333·9-s − 1.88·11-s − 0.162·13-s + 0.258·15-s + 1.65·17-s + 0.229·19-s + 0.308·21-s + 0.762·23-s + 0.200·25-s − 0.192·27-s − 0.262·29-s + 1.58·31-s + 1.08·33-s + 0.239·35-s − 0.0963·37-s + 0.0938·39-s + 1.28·41-s − 0.572·43-s − 0.149·45-s − 0.533·47-s − 0.714·49-s − 0.956·51-s + 1.09·53-s + 0.841·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4560\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(36.4117\)
Root analytic conductor: \(6.03421\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4560} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4560,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
19 \( 1 - T \)
good7 \( 1 + 1.41T + 7T^{2} \)
11 \( 1 + 6.24T + 11T^{2} \)
13 \( 1 + 0.585T + 13T^{2} \)
17 \( 1 - 6.82T + 17T^{2} \)
23 \( 1 - 3.65T + 23T^{2} \)
29 \( 1 + 1.41T + 29T^{2} \)
31 \( 1 - 8.82T + 31T^{2} \)
37 \( 1 + 0.585T + 37T^{2} \)
41 \( 1 - 8.24T + 41T^{2} \)
43 \( 1 + 3.75T + 43T^{2} \)
47 \( 1 + 3.65T + 47T^{2} \)
53 \( 1 - 8T + 53T^{2} \)
59 \( 1 - 4.48T + 59T^{2} \)
61 \( 1 + 15.3T + 61T^{2} \)
67 \( 1 + 1.65T + 67T^{2} \)
71 \( 1 - 5.17T + 71T^{2} \)
73 \( 1 - 3.65T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 7.17T + 83T^{2} \)
89 \( 1 + 13.8T + 89T^{2} \)
97 \( 1 + 18.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85196029286568146826616631506, −7.35874626088897185190473797697, −6.50425799242934350531402742359, −5.58688743023813479313685275737, −5.18596955333638948176176180447, −4.30736205245800156572392018995, −3.18848012820764256904112270407, −2.68154652196298273452295893037, −1.12137629004461065882189230491, 0, 1.12137629004461065882189230491, 2.68154652196298273452295893037, 3.18848012820764256904112270407, 4.30736205245800156572392018995, 5.18596955333638948176176180447, 5.58688743023813479313685275737, 6.50425799242934350531402742359, 7.35874626088897185190473797697, 7.85196029286568146826616631506

Graph of the $Z$-function along the critical line