Properties

Label 2-4560-1.1-c1-0-34
Degree $2$
Conductor $4560$
Sign $1$
Analytic cond. $36.4117$
Root an. cond. $6.03421$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 1.41·7-s + 9-s + 3.41·11-s + 3.41·13-s − 15-s + 2.82·17-s − 19-s + 1.41·21-s − 0.828·23-s + 25-s + 27-s + 7.07·29-s − 0.828·31-s + 3.41·33-s − 1.41·35-s − 2.24·37-s + 3.41·39-s − 9.89·41-s + 3.07·43-s − 45-s + 8.82·47-s − 5·49-s + 2.82·51-s − 8.48·53-s − 3.41·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 0.534·7-s + 0.333·9-s + 1.02·11-s + 0.946·13-s − 0.258·15-s + 0.685·17-s − 0.229·19-s + 0.308·21-s − 0.172·23-s + 0.200·25-s + 0.192·27-s + 1.31·29-s − 0.148·31-s + 0.594·33-s − 0.239·35-s − 0.368·37-s + 0.546·39-s − 1.54·41-s + 0.468·43-s − 0.149·45-s + 1.28·47-s − 0.714·49-s + 0.396·51-s − 1.16·53-s − 0.460·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4560\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(36.4117\)
Root analytic conductor: \(6.03421\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4560} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.834319420\)
\(L(\frac12)\) \(\approx\) \(2.834319420\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
19 \( 1 + T \)
good7 \( 1 - 1.41T + 7T^{2} \)
11 \( 1 - 3.41T + 11T^{2} \)
13 \( 1 - 3.41T + 13T^{2} \)
17 \( 1 - 2.82T + 17T^{2} \)
23 \( 1 + 0.828T + 23T^{2} \)
29 \( 1 - 7.07T + 29T^{2} \)
31 \( 1 + 0.828T + 31T^{2} \)
37 \( 1 + 2.24T + 37T^{2} \)
41 \( 1 + 9.89T + 41T^{2} \)
43 \( 1 - 3.07T + 43T^{2} \)
47 \( 1 - 8.82T + 47T^{2} \)
53 \( 1 + 8.48T + 53T^{2} \)
59 \( 1 - 6.82T + 59T^{2} \)
61 \( 1 - 9.65T + 61T^{2} \)
67 \( 1 + 11.3T + 67T^{2} \)
71 \( 1 - 9.17T + 71T^{2} \)
73 \( 1 + 0.343T + 73T^{2} \)
79 \( 1 - 2.34T + 79T^{2} \)
83 \( 1 + 3.65T + 83T^{2} \)
89 \( 1 + 3.75T + 89T^{2} \)
97 \( 1 + 7.89T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.431391912250587023921708463103, −7.75003911923292829882907355601, −6.89977485319206489933838030084, −6.29920285460455207950092241663, −5.31830782098689814805214818111, −4.41216684544913210931548293249, −3.76380810488038290206895652756, −3.05730738163871230646697248460, −1.83542467959710173493793210079, −0.988862068120792651843606561548, 0.988862068120792651843606561548, 1.83542467959710173493793210079, 3.05730738163871230646697248460, 3.76380810488038290206895652756, 4.41216684544913210931548293249, 5.31830782098689814805214818111, 6.29920285460455207950092241663, 6.89977485319206489933838030084, 7.75003911923292829882907355601, 8.431391912250587023921708463103

Graph of the $Z$-function along the critical line