Properties

Label 2-456-152.101-c1-0-14
Degree $2$
Conductor $456$
Sign $0.928 + 0.371i$
Analytic cond. $3.64117$
Root an. cond. $1.90818$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.40 − 0.130i)2-s + (0.342 − 0.939i)3-s + (1.96 + 0.367i)4-s + (−0.0410 + 0.00723i)5-s + (−0.604 + 1.27i)6-s + (−1.18 + 2.05i)7-s + (−2.72 − 0.773i)8-s + (−0.766 − 0.642i)9-s + (0.0587 − 0.00483i)10-s + (4.23 − 2.44i)11-s + (1.01 − 1.72i)12-s + (1.16 + 3.20i)13-s + (1.93 − 2.73i)14-s + (−0.00723 + 0.0410i)15-s + (3.73 + 1.44i)16-s + (2.30 − 1.93i)17-s + ⋯
L(s)  = 1  + (−0.995 − 0.0922i)2-s + (0.197 − 0.542i)3-s + (0.982 + 0.183i)4-s + (−0.0183 + 0.00323i)5-s + (−0.246 + 0.522i)6-s + (−0.448 + 0.776i)7-s + (−0.961 − 0.273i)8-s + (−0.255 − 0.214i)9-s + (0.0185 − 0.00152i)10-s + (1.27 − 0.738i)11-s + (0.293 − 0.497i)12-s + (0.323 + 0.889i)13-s + (0.518 − 0.732i)14-s + (−0.00186 + 0.0105i)15-s + (0.932 + 0.361i)16-s + (0.558 − 0.468i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.928 + 0.371i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.928 + 0.371i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(456\)    =    \(2^{3} \cdot 3 \cdot 19\)
Sign: $0.928 + 0.371i$
Analytic conductor: \(3.64117\)
Root analytic conductor: \(1.90818\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{456} (253, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 456,\ (\ :1/2),\ 0.928 + 0.371i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.995708 - 0.191676i\)
\(L(\frac12)\) \(\approx\) \(0.995708 - 0.191676i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.40 + 0.130i)T \)
3 \( 1 + (-0.342 + 0.939i)T \)
19 \( 1 + (-4.20 - 1.13i)T \)
good5 \( 1 + (0.0410 - 0.00723i)T + (4.69 - 1.71i)T^{2} \)
7 \( 1 + (1.18 - 2.05i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-4.23 + 2.44i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + (-1.16 - 3.20i)T + (-9.95 + 8.35i)T^{2} \)
17 \( 1 + (-2.30 + 1.93i)T + (2.95 - 16.7i)T^{2} \)
23 \( 1 + (0.281 - 1.59i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (-3.88 + 4.62i)T + (-5.03 - 28.5i)T^{2} \)
31 \( 1 + (-4.72 + 8.18i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 - 5.19iT - 37T^{2} \)
41 \( 1 + (0.487 + 0.177i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (-10.2 + 1.80i)T + (40.4 - 14.7i)T^{2} \)
47 \( 1 + (-4.77 - 4.01i)T + (8.16 + 46.2i)T^{2} \)
53 \( 1 + (2.10 + 0.371i)T + (49.8 + 18.1i)T^{2} \)
59 \( 1 + (8.37 + 9.98i)T + (-10.2 + 58.1i)T^{2} \)
61 \( 1 + (-0.262 - 0.0462i)T + (57.3 + 20.8i)T^{2} \)
67 \( 1 + (-8.74 + 10.4i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (-1.81 - 10.2i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (2.97 + 1.08i)T + (55.9 + 46.9i)T^{2} \)
79 \( 1 + (10.9 + 3.99i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (-7.53 - 4.34i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + (14.5 - 5.28i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (4.09 - 3.43i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.23606449981927980882027312093, −9.561722989577390426119609436140, −9.441716077588730359237879724000, −8.359551297083765294487849973113, −7.53459718173965466853420586576, −6.39391208434062512710800620280, −5.89763600934763543030626105651, −3.75648104849111754845251770816, −2.57878377798533278659276766723, −1.16166898548054783163141073780, 1.17234184484031785601622596747, 3.01588479343033926840568542751, 4.09482795814619554628631538893, 5.64204972215129302169576930382, 6.74302469096780528735428576905, 7.53216566427557812906674604462, 8.567456144035239679633612163876, 9.410501754766690245762173073175, 10.18430842351401000585325301785, 10.67788745711874628361827465821

Graph of the $Z$-function along the critical line