Properties

Label 2-456-152.101-c1-0-12
Degree $2$
Conductor $456$
Sign $0.221 - 0.975i$
Analytic cond. $3.64117$
Root an. cond. $1.90818$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.40 − 0.139i)2-s + (−0.342 + 0.939i)3-s + (1.96 + 0.392i)4-s + (−3.00 + 0.529i)5-s + (0.612 − 1.27i)6-s + (1.26 − 2.18i)7-s + (−2.70 − 0.825i)8-s + (−0.766 − 0.642i)9-s + (4.30 − 0.327i)10-s + (2.96 − 1.71i)11-s + (−1.03 + 1.70i)12-s + (1.65 + 4.54i)13-s + (−2.07 + 2.89i)14-s + (0.529 − 3.00i)15-s + (3.69 + 1.53i)16-s + (2.60 − 2.18i)17-s + ⋯
L(s)  = 1  + (−0.995 − 0.0985i)2-s + (−0.197 + 0.542i)3-s + (0.980 + 0.196i)4-s + (−1.34 + 0.237i)5-s + (0.249 − 0.520i)6-s + (0.476 − 0.825i)7-s + (−0.956 − 0.291i)8-s + (−0.255 − 0.214i)9-s + (1.36 − 0.103i)10-s + (0.893 − 0.515i)11-s + (−0.300 + 0.493i)12-s + (0.458 + 1.26i)13-s + (−0.555 + 0.774i)14-s + (0.136 − 0.776i)15-s + (0.923 + 0.384i)16-s + (0.630 − 0.529i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.221 - 0.975i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.221 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(456\)    =    \(2^{3} \cdot 3 \cdot 19\)
Sign: $0.221 - 0.975i$
Analytic conductor: \(3.64117\)
Root analytic conductor: \(1.90818\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{456} (253, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 456,\ (\ :1/2),\ 0.221 - 0.975i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.494988 + 0.395029i\)
\(L(\frac12)\) \(\approx\) \(0.494988 + 0.395029i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.40 + 0.139i)T \)
3 \( 1 + (0.342 - 0.939i)T \)
19 \( 1 + (0.378 - 4.34i)T \)
good5 \( 1 + (3.00 - 0.529i)T + (4.69 - 1.71i)T^{2} \)
7 \( 1 + (-1.26 + 2.18i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-2.96 + 1.71i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + (-1.65 - 4.54i)T + (-9.95 + 8.35i)T^{2} \)
17 \( 1 + (-2.60 + 2.18i)T + (2.95 - 16.7i)T^{2} \)
23 \( 1 + (0.901 - 5.11i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (6.27 - 7.48i)T + (-5.03 - 28.5i)T^{2} \)
31 \( 1 + (4.05 - 7.03i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 11.4iT - 37T^{2} \)
41 \( 1 + (-7.17 - 2.61i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (3.23 - 0.571i)T + (40.4 - 14.7i)T^{2} \)
47 \( 1 + (-7.30 - 6.12i)T + (8.16 + 46.2i)T^{2} \)
53 \( 1 + (-0.288 - 0.0508i)T + (49.8 + 18.1i)T^{2} \)
59 \( 1 + (-9.52 - 11.3i)T + (-10.2 + 58.1i)T^{2} \)
61 \( 1 + (-6.55 - 1.15i)T + (57.3 + 20.8i)T^{2} \)
67 \( 1 + (-1.55 + 1.85i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (-0.430 - 2.43i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (1.38 + 0.505i)T + (55.9 + 46.9i)T^{2} \)
79 \( 1 + (-2.76 - 1.00i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (8.43 + 4.86i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + (-7.09 + 2.58i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (0.565 - 0.474i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.23390355968802121228300559584, −10.54669046173507783326494107597, −9.336476131359669066456437377448, −8.711841782360665752877306960738, −7.51657076273469285202480788758, −7.14165719901335764678707620751, −5.75251482195084909776001959061, −3.98468403257664526248604196509, −3.58226220005434561643091505557, −1.30805027812967144901490604304, 0.63947585461881276827664324184, 2.29090517068310965646037809391, 3.84258099019263639072790260371, 5.40784305048149861542095081091, 6.43544145625643235726853415613, 7.53667463089750645085253629542, 8.143362279640266966942729087769, 8.759862601370845977710086888263, 9.912061038514446834877229260018, 11.10335930208579643174759318188

Graph of the $Z$-function along the critical line