L(s) = 1 | + (0.5 − 0.866i)2-s + (1.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s − 1.73i·6-s + (−0.5 + 0.866i)7-s − 0.999·8-s + (1.5 − 2.59i)9-s + (1 − 1.73i)11-s + (−1.49 − 0.866i)12-s + (−3 − 5.19i)13-s + (0.499 + 0.866i)14-s + (−0.5 + 0.866i)16-s + 2·17-s + (−1.5 − 2.59i)18-s + 6·19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.866 − 0.499i)3-s + (−0.249 − 0.433i)4-s − 0.707i·6-s + (−0.188 + 0.327i)7-s − 0.353·8-s + (0.5 − 0.866i)9-s + (0.301 − 0.522i)11-s + (−0.433 − 0.250i)12-s + (−0.832 − 1.44i)13-s + (0.133 + 0.231i)14-s + (−0.125 + 0.216i)16-s + 0.485·17-s + (−0.353 − 0.612i)18-s + 1.37·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.34274 - 1.60022i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.34274 - 1.60022i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (-1.5 + 0.866i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (0.5 - 0.866i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3 + 5.19i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 - 6T + 19T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.5 - 7.79i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1 - 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2T + 37T^{2} \) |
| 41 | \( 1 + (-5.5 - 9.52i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2 - 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3.5 - 6.06i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 + (-2 - 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.5 + 9.52i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 - 4T + 73T^{2} \) |
| 79 | \( 1 + (-6 + 10.3i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.5 - 9.52i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - T + 89T^{2} \) |
| 97 | \( 1 + (4 - 6.92i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89494979573783573752794986184, −9.801225634631384391720901245147, −9.236182684772098707220787825060, −8.097339354425975875850425490863, −7.33363924584719492375648275269, −6.01346710259467282913268356923, −5.01338013227043856912891670704, −3.37561479560052560478036735673, −2.87865039617803272921413129887, −1.21655190000704858499829476092,
2.21546056966703936744975929825, 3.66955792786175549294448284817, 4.43777152634048219273672562745, 5.52079711748507274723474061707, 7.04986705036110303408472636946, 7.44251812564754360861457906003, 8.648292995987210437224674686512, 9.550844405896477565828687250390, 10.01017730899387037747275254222, 11.48966756677868233448556566790