L(s) = 1 | + (−1 + i)2-s − 2i·4-s + (3 − 3i)7-s + (2 + 2i)8-s − 12·11-s + (12 + 12i)13-s + 6i·14-s − 4·16-s + (12 − 12i)17-s − 20i·19-s + (12 − 12i)22-s + (3 + 3i)23-s − 24·26-s + (−6 − 6i)28-s − 30i·29-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s − 0.5i·4-s + (0.428 − 0.428i)7-s + (0.250 + 0.250i)8-s − 1.09·11-s + (0.923 + 0.923i)13-s + 0.428i·14-s − 0.250·16-s + (0.705 − 0.705i)17-s − 1.05i·19-s + (0.545 − 0.545i)22-s + (0.130 + 0.130i)23-s − 0.923·26-s + (−0.214 − 0.214i)28-s − 1.03i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.307696399\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.307696399\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-3 + 3i)T - 49iT^{2} \) |
| 11 | \( 1 + 12T + 121T^{2} \) |
| 13 | \( 1 + (-12 - 12i)T + 169iT^{2} \) |
| 17 | \( 1 + (-12 + 12i)T - 289iT^{2} \) |
| 19 | \( 1 + 20iT - 361T^{2} \) |
| 23 | \( 1 + (-3 - 3i)T + 529iT^{2} \) |
| 29 | \( 1 + 30iT - 841T^{2} \) |
| 31 | \( 1 + 8T + 961T^{2} \) |
| 37 | \( 1 + (-48 + 48i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 - 48T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-27 - 27i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-27 + 27i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (12 + 12i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 60iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 32T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-3 + 3i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 48T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-12 - 12i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 40iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-93 - 93i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 30iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (12 - 12i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.98816700885998946765037781109, −9.763698402816044382839187809700, −9.061516409740485338344520988386, −7.946680033049022121071910728037, −7.37623227060207952863675107331, −6.24793164507256641198846913758, −5.21717934895737897723979751904, −4.14065018367742846364065204204, −2.44953680416428328450775306204, −0.77792245781875828776542141108,
1.19029877160003910635911488839, 2.64197868092256633405935035009, 3.76251780683402980053370759450, 5.24063989221777173485652052904, 6.09959465441499361278566382897, 7.71580436606128620507935154608, 8.136274755116591802529441643843, 9.081880756409868057477351844910, 10.32077341497812238302166671179, 10.65070665597727047068646486991