Properties

Label 2-450-225.79-c1-0-5
Degree $2$
Conductor $450$
Sign $0.305 - 0.952i$
Analytic cond. $3.59326$
Root an. cond. $1.89559$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.743 + 0.669i)2-s + (−0.429 + 1.67i)3-s + (0.104 − 0.994i)4-s + (0.680 − 2.12i)5-s + (−0.803 − 1.53i)6-s + (−0.636 − 0.367i)7-s + (0.587 + 0.809i)8-s + (−2.63 − 1.44i)9-s + (0.919 + 2.03i)10-s + (1.82 + 2.02i)11-s + (1.62 + 0.602i)12-s + (1.59 + 1.43i)13-s + (0.718 − 0.152i)14-s + (3.28 + 2.05i)15-s + (−0.978 − 0.207i)16-s + (4.42 + 6.08i)17-s + ⋯
L(s)  = 1  + (−0.525 + 0.473i)2-s + (−0.248 + 0.968i)3-s + (0.0522 − 0.497i)4-s + (0.304 − 0.952i)5-s + (−0.328 − 0.626i)6-s + (−0.240 − 0.138i)7-s + (0.207 + 0.286i)8-s + (−0.876 − 0.480i)9-s + (0.290 + 0.644i)10-s + (0.549 + 0.609i)11-s + (0.468 + 0.173i)12-s + (0.443 + 0.399i)13-s + (0.192 − 0.0408i)14-s + (0.847 + 0.531i)15-s + (−0.244 − 0.0519i)16-s + (1.07 + 1.47i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.305 - 0.952i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.305 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(450\)    =    \(2 \cdot 3^{2} \cdot 5^{2}\)
Sign: $0.305 - 0.952i$
Analytic conductor: \(3.59326\)
Root analytic conductor: \(1.89559\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{450} (79, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 450,\ (\ :1/2),\ 0.305 - 0.952i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.849360 + 0.619642i\)
\(L(\frac12)\) \(\approx\) \(0.849360 + 0.619642i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.743 - 0.669i)T \)
3 \( 1 + (0.429 - 1.67i)T \)
5 \( 1 + (-0.680 + 2.12i)T \)
good7 \( 1 + (0.636 + 0.367i)T + (3.5 + 6.06i)T^{2} \)
11 \( 1 + (-1.82 - 2.02i)T + (-1.14 + 10.9i)T^{2} \)
13 \( 1 + (-1.59 - 1.43i)T + (1.35 + 12.9i)T^{2} \)
17 \( 1 + (-4.42 - 6.08i)T + (-5.25 + 16.1i)T^{2} \)
19 \( 1 + (-5.79 + 4.20i)T + (5.87 - 18.0i)T^{2} \)
23 \( 1 + (-0.786 - 3.70i)T + (-21.0 + 9.35i)T^{2} \)
29 \( 1 + (6.14 - 2.73i)T + (19.4 - 21.5i)T^{2} \)
31 \( 1 + (-7.30 - 3.25i)T + (20.7 + 23.0i)T^{2} \)
37 \( 1 + (-3.70 + 1.20i)T + (29.9 - 21.7i)T^{2} \)
41 \( 1 + (4.07 - 4.52i)T + (-4.28 - 40.7i)T^{2} \)
43 \( 1 + (-5.20 - 3.00i)T + (21.5 + 37.2i)T^{2} \)
47 \( 1 + (0.0735 + 0.165i)T + (-31.4 + 34.9i)T^{2} \)
53 \( 1 + (2.88 - 3.97i)T + (-16.3 - 50.4i)T^{2} \)
59 \( 1 + (-6.23 + 6.92i)T + (-6.16 - 58.6i)T^{2} \)
61 \( 1 + (8.14 + 9.04i)T + (-6.37 + 60.6i)T^{2} \)
67 \( 1 + (2.02 - 4.55i)T + (-44.8 - 49.7i)T^{2} \)
71 \( 1 + (-5.00 - 3.63i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (-2.79 - 0.909i)T + (59.0 + 42.9i)T^{2} \)
79 \( 1 + (0.894 - 0.398i)T + (52.8 - 58.7i)T^{2} \)
83 \( 1 + (-5.44 + 0.572i)T + (81.1 - 17.2i)T^{2} \)
89 \( 1 + (-5.39 + 16.5i)T + (-72.0 - 52.3i)T^{2} \)
97 \( 1 + (5.80 + 13.0i)T + (-64.9 + 72.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.13840173799724588523741703238, −9.966511042615241792575883050341, −9.541086904742985508202106632849, −8.786416759087620242250663648578, −7.80241129023493515003687628811, −6.47121412945199859450208110300, −5.56600865873163308595495971748, −4.69494398514829343323005294236, −3.53570613424708465381390775613, −1.31257634513072592185158720409, 0.998502265868531393878240751785, 2.59343552028674533176592695354, 3.43658244405062657606892005489, 5.54674567604375986943817774431, 6.32397296719194412826754269617, 7.38118319309629392094029145581, 7.980565166890393397398627135526, 9.253119166951889907952208764504, 10.04646459926214600032825039385, 11.05173570101994413112697399843

Graph of the $Z$-function along the critical line