Properties

Label 2-450-225.106-c1-0-27
Degree $2$
Conductor $450$
Sign $0.748 + 0.663i$
Analytic cond. $3.59326$
Root an. cond. $1.89559$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.978 + 0.207i)2-s + (1.55 − 0.768i)3-s + (0.913 + 0.406i)4-s + (−0.618 − 2.14i)5-s + (1.67 − 0.429i)6-s + (−0.0993 + 0.172i)7-s + (0.809 + 0.587i)8-s + (1.81 − 2.38i)9-s + (−0.158 − 2.23i)10-s + (−6.13 − 1.30i)11-s + (1.73 − 0.0712i)12-s + (5.94 − 1.26i)13-s + (−0.132 + 0.147i)14-s + (−2.61 − 2.85i)15-s + (0.669 + 0.743i)16-s + (4.66 + 3.38i)17-s + ⋯
L(s)  = 1  + (0.691 + 0.147i)2-s + (0.896 − 0.443i)3-s + (0.456 + 0.203i)4-s + (−0.276 − 0.960i)5-s + (0.685 − 0.175i)6-s + (−0.0375 + 0.0650i)7-s + (0.286 + 0.207i)8-s + (0.605 − 0.795i)9-s + (−0.0500 − 0.705i)10-s + (−1.84 − 0.393i)11-s + (0.499 − 0.0205i)12-s + (1.64 − 0.350i)13-s + (−0.0355 + 0.0394i)14-s + (−0.674 − 0.738i)15-s + (0.167 + 0.185i)16-s + (1.13 + 0.821i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.748 + 0.663i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.748 + 0.663i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(450\)    =    \(2 \cdot 3^{2} \cdot 5^{2}\)
Sign: $0.748 + 0.663i$
Analytic conductor: \(3.59326\)
Root analytic conductor: \(1.89559\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{450} (331, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 450,\ (\ :1/2),\ 0.748 + 0.663i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.42632 - 0.920837i\)
\(L(\frac12)\) \(\approx\) \(2.42632 - 0.920837i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.978 - 0.207i)T \)
3 \( 1 + (-1.55 + 0.768i)T \)
5 \( 1 + (0.618 + 2.14i)T \)
good7 \( 1 + (0.0993 - 0.172i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (6.13 + 1.30i)T + (10.0 + 4.47i)T^{2} \)
13 \( 1 + (-5.94 + 1.26i)T + (11.8 - 5.28i)T^{2} \)
17 \( 1 + (-4.66 - 3.38i)T + (5.25 + 16.1i)T^{2} \)
19 \( 1 + (0.00256 + 0.00186i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (4.01 - 4.45i)T + (-2.40 - 22.8i)T^{2} \)
29 \( 1 + (-0.309 - 2.94i)T + (-28.3 + 6.02i)T^{2} \)
31 \( 1 + (0.379 - 3.61i)T + (-30.3 - 6.44i)T^{2} \)
37 \( 1 + (-0.959 + 2.95i)T + (-29.9 - 21.7i)T^{2} \)
41 \( 1 + (-0.197 + 0.0420i)T + (37.4 - 16.6i)T^{2} \)
43 \( 1 + (0.889 - 1.53i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (0.345 + 3.28i)T + (-45.9 + 9.77i)T^{2} \)
53 \( 1 + (9.46 - 6.87i)T + (16.3 - 50.4i)T^{2} \)
59 \( 1 + (-3.13 + 0.665i)T + (53.8 - 23.9i)T^{2} \)
61 \( 1 + (1.50 + 0.320i)T + (55.7 + 24.8i)T^{2} \)
67 \( 1 + (-0.711 + 6.76i)T + (-65.5 - 13.9i)T^{2} \)
71 \( 1 + (4.04 - 2.93i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (-4.08 - 12.5i)T + (-59.0 + 42.9i)T^{2} \)
79 \( 1 + (0.329 + 3.13i)T + (-77.2 + 16.4i)T^{2} \)
83 \( 1 + (-10.4 + 4.65i)T + (55.5 - 61.6i)T^{2} \)
89 \( 1 + (2.85 + 8.77i)T + (-72.0 + 52.3i)T^{2} \)
97 \( 1 + (-0.174 - 1.66i)T + (-94.8 + 20.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.07407141037796325048736173929, −10.12908867163137289178548646016, −8.840606007464248500918629172896, −8.056935516944337398196974514895, −7.67429844003527979710036442517, −6.05807075022137746308857589876, −5.34051493577152760397347250515, −3.91162040836229963291979570105, −3.08914741731816861176744542627, −1.45498146308298074636380626408, 2.30250185175907009317201305388, 3.18752100033119219035715721247, 4.11653362325723647334096377442, 5.32074642179628334974364138496, 6.50744704267956035210267914290, 7.70286964056559754011163781501, 8.170581033114277927064331306247, 9.689465889329917657106882996680, 10.41469048425286368636230265326, 11.00196963392341583681993874080

Graph of the $Z$-function along the critical line