Properties

Label 2-450-225.106-c1-0-22
Degree $2$
Conductor $450$
Sign $0.890 - 0.455i$
Analytic cond. $3.59326$
Root an. cond. $1.89559$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.978 + 0.207i)2-s + (1.61 + 0.612i)3-s + (0.913 + 0.406i)4-s + (2.21 − 0.290i)5-s + (1.45 + 0.936i)6-s + (0.132 − 0.229i)7-s + (0.809 + 0.587i)8-s + (2.24 + 1.98i)9-s + (2.22 + 0.177i)10-s + (−3.86 − 0.821i)11-s + (1.23 + 1.21i)12-s + (−3.18 + 0.676i)13-s + (0.177 − 0.197i)14-s + (3.76 + 0.888i)15-s + (0.669 + 0.743i)16-s + (−3.78 − 2.75i)17-s + ⋯
L(s)  = 1  + (0.691 + 0.147i)2-s + (0.935 + 0.353i)3-s + (0.456 + 0.203i)4-s + (0.991 − 0.129i)5-s + (0.594 + 0.382i)6-s + (0.0501 − 0.0869i)7-s + (0.286 + 0.207i)8-s + (0.749 + 0.661i)9-s + (0.704 + 0.0559i)10-s + (−1.16 − 0.247i)11-s + (0.355 + 0.351i)12-s + (−0.883 + 0.187i)13-s + (0.0474 − 0.0527i)14-s + (0.973 + 0.229i)15-s + (0.167 + 0.185i)16-s + (−0.918 − 0.667i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.890 - 0.455i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.890 - 0.455i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(450\)    =    \(2 \cdot 3^{2} \cdot 5^{2}\)
Sign: $0.890 - 0.455i$
Analytic conductor: \(3.59326\)
Root analytic conductor: \(1.89559\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{450} (331, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 450,\ (\ :1/2),\ 0.890 - 0.455i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.88169 + 0.693694i\)
\(L(\frac12)\) \(\approx\) \(2.88169 + 0.693694i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.978 - 0.207i)T \)
3 \( 1 + (-1.61 - 0.612i)T \)
5 \( 1 + (-2.21 + 0.290i)T \)
good7 \( 1 + (-0.132 + 0.229i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (3.86 + 0.821i)T + (10.0 + 4.47i)T^{2} \)
13 \( 1 + (3.18 - 0.676i)T + (11.8 - 5.28i)T^{2} \)
17 \( 1 + (3.78 + 2.75i)T + (5.25 + 16.1i)T^{2} \)
19 \( 1 + (4.92 + 3.58i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (-2.53 + 2.81i)T + (-2.40 - 22.8i)T^{2} \)
29 \( 1 + (-0.628 - 5.98i)T + (-28.3 + 6.02i)T^{2} \)
31 \( 1 + (-0.253 + 2.40i)T + (-30.3 - 6.44i)T^{2} \)
37 \( 1 + (2.82 - 8.68i)T + (-29.9 - 21.7i)T^{2} \)
41 \( 1 + (-3.58 + 0.761i)T + (37.4 - 16.6i)T^{2} \)
43 \( 1 + (-0.506 + 0.876i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (0.0870 + 0.828i)T + (-45.9 + 9.77i)T^{2} \)
53 \( 1 + (-4.19 + 3.04i)T + (16.3 - 50.4i)T^{2} \)
59 \( 1 + (-1.61 + 0.343i)T + (53.8 - 23.9i)T^{2} \)
61 \( 1 + (9.94 + 2.11i)T + (55.7 + 24.8i)T^{2} \)
67 \( 1 + (1.45 - 13.8i)T + (-65.5 - 13.9i)T^{2} \)
71 \( 1 + (-10.6 + 7.74i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (2.32 + 7.15i)T + (-59.0 + 42.9i)T^{2} \)
79 \( 1 + (0.773 + 7.36i)T + (-77.2 + 16.4i)T^{2} \)
83 \( 1 + (-14.0 + 6.23i)T + (55.5 - 61.6i)T^{2} \)
89 \( 1 + (3.46 + 10.6i)T + (-72.0 + 52.3i)T^{2} \)
97 \( 1 + (-1.63 - 15.5i)T + (-94.8 + 20.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.88650378549831937280744618293, −10.36569271039653651410641457701, −9.263371078117971605135988317246, −8.561290652849687809346662270060, −7.38304666829626516124255034127, −6.51649622919209878581146149652, −5.07525264350442479962823745215, −4.59783813536558520958814107638, −2.88686642731267263784845833586, −2.24268632177584747358183835096, 2.00785145382572598697039497361, 2.61893909793276948562199089699, 4.06841717104017128691017791081, 5.27410808436298647257259665217, 6.30009968125615649347151305348, 7.27788190232038312286570614193, 8.232941146973116289479105520631, 9.303510301997148475190253500942, 10.19080942527888231706918402988, 10.84600318292008860181815528166

Graph of the $Z$-function along the critical line