Properties

Label 2-450-1.1-c3-0-22
Degree 22
Conductor 450450
Sign 1-1
Analytic cond. 26.550826.5508
Root an. cond. 5.152755.15275
Motivic weight 33
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4·4-s − 7-s + 8·8-s − 42·11-s − 67·13-s − 2·14-s + 16·16-s − 54·17-s − 115·19-s − 84·22-s + 162·23-s − 134·26-s − 4·28-s + 210·29-s − 193·31-s + 32·32-s − 108·34-s − 286·37-s − 230·38-s − 12·41-s + 263·43-s − 168·44-s + 324·46-s − 414·47-s − 342·49-s − 268·52-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.0539·7-s + 0.353·8-s − 1.15·11-s − 1.42·13-s − 0.0381·14-s + 1/4·16-s − 0.770·17-s − 1.38·19-s − 0.814·22-s + 1.46·23-s − 1.01·26-s − 0.0269·28-s + 1.34·29-s − 1.11·31-s + 0.176·32-s − 0.544·34-s − 1.27·37-s − 0.981·38-s − 0.0457·41-s + 0.932·43-s − 0.575·44-s + 1.03·46-s − 1.28·47-s − 0.997·49-s − 0.714·52-s + ⋯

Functional equation

Λ(s)=(450s/2ΓC(s)L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}
Λ(s)=(450s/2ΓC(s+3/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 450450    =    232522 \cdot 3^{2} \cdot 5^{2}
Sign: 1-1
Analytic conductor: 26.550826.5508
Root analytic conductor: 5.152755.15275
Motivic weight: 33
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 450, ( :3/2), 1)(2,\ 450,\ (\ :3/2),\ -1)

Particular Values

L(2)L(2) == 00
L(12)L(\frac12) == 00
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1pT 1 - p T
3 1 1
5 1 1
good7 1+T+p3T2 1 + T + p^{3} T^{2}
11 1+42T+p3T2 1 + 42 T + p^{3} T^{2}
13 1+67T+p3T2 1 + 67 T + p^{3} T^{2}
17 1+54T+p3T2 1 + 54 T + p^{3} T^{2}
19 1+115T+p3T2 1 + 115 T + p^{3} T^{2}
23 1162T+p3T2 1 - 162 T + p^{3} T^{2}
29 1210T+p3T2 1 - 210 T + p^{3} T^{2}
31 1+193T+p3T2 1 + 193 T + p^{3} T^{2}
37 1+286T+p3T2 1 + 286 T + p^{3} T^{2}
41 1+12T+p3T2 1 + 12 T + p^{3} T^{2}
43 1263T+p3T2 1 - 263 T + p^{3} T^{2}
47 1+414T+p3T2 1 + 414 T + p^{3} T^{2}
53 1192T+p3T2 1 - 192 T + p^{3} T^{2}
59 1+690T+p3T2 1 + 690 T + p^{3} T^{2}
61 1+733T+p3T2 1 + 733 T + p^{3} T^{2}
67 1299T+p3T2 1 - 299 T + p^{3} T^{2}
71 1228T+p3T2 1 - 228 T + p^{3} T^{2}
73 1938T+p3T2 1 - 938 T + p^{3} T^{2}
79 1+160T+p3T2 1 + 160 T + p^{3} T^{2}
83 1462T+p3T2 1 - 462 T + p^{3} T^{2}
89 1240T+p3T2 1 - 240 T + p^{3} T^{2}
97 1+511T+p3T2 1 + 511 T + p^{3} T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.53590891099361381586125100776, −9.383983358771029752170594587040, −8.286512841298656316969519409231, −7.27006923798158736534749385096, −6.47133082170900758326102848284, −5.15201860683402424611559286257, −4.59835388450073658273450453813, −3.07047455545715100279299436304, −2.12234604163918774211384388930, 0, 2.12234604163918774211384388930, 3.07047455545715100279299436304, 4.59835388450073658273450453813, 5.15201860683402424611559286257, 6.47133082170900758326102848284, 7.27006923798158736534749385096, 8.286512841298656316969519409231, 9.383983358771029752170594587040, 10.53590891099361381586125100776

Graph of the ZZ-function along the critical line