Properties

Label 2-450-1.1-c3-0-13
Degree $2$
Conductor $450$
Sign $-1$
Analytic cond. $26.5508$
Root an. cond. $5.15275$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·4-s − 32·7-s − 8·8-s + 60·11-s + 34·13-s + 64·14-s + 16·16-s + 42·17-s − 76·19-s − 120·22-s − 68·26-s − 128·28-s − 6·29-s − 232·31-s − 32·32-s − 84·34-s − 134·37-s + 152·38-s − 234·41-s + 412·43-s + 240·44-s − 360·47-s + 681·49-s + 136·52-s + 222·53-s + 256·56-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.72·7-s − 0.353·8-s + 1.64·11-s + 0.725·13-s + 1.22·14-s + 1/4·16-s + 0.599·17-s − 0.917·19-s − 1.16·22-s − 0.512·26-s − 0.863·28-s − 0.0384·29-s − 1.34·31-s − 0.176·32-s − 0.423·34-s − 0.595·37-s + 0.648·38-s − 0.891·41-s + 1.46·43-s + 0.822·44-s − 1.11·47-s + 1.98·49-s + 0.362·52-s + 0.575·53-s + 0.610·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(450\)    =    \(2 \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(26.5508\)
Root analytic conductor: \(5.15275\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 450,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 32 T + p^{3} T^{2} \)
11 \( 1 - 60 T + p^{3} T^{2} \)
13 \( 1 - 34 T + p^{3} T^{2} \)
17 \( 1 - 42 T + p^{3} T^{2} \)
19 \( 1 + 4 p T + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 + 6 T + p^{3} T^{2} \)
31 \( 1 + 232 T + p^{3} T^{2} \)
37 \( 1 + 134 T + p^{3} T^{2} \)
41 \( 1 + 234 T + p^{3} T^{2} \)
43 \( 1 - 412 T + p^{3} T^{2} \)
47 \( 1 + 360 T + p^{3} T^{2} \)
53 \( 1 - 222 T + p^{3} T^{2} \)
59 \( 1 + 660 T + p^{3} T^{2} \)
61 \( 1 + 490 T + p^{3} T^{2} \)
67 \( 1 + 812 T + p^{3} T^{2} \)
71 \( 1 + 120 T + p^{3} T^{2} \)
73 \( 1 + 746 T + p^{3} T^{2} \)
79 \( 1 - 152 T + p^{3} T^{2} \)
83 \( 1 + 804 T + p^{3} T^{2} \)
89 \( 1 - 678 T + p^{3} T^{2} \)
97 \( 1 + 2 p T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08091160105148083731026840322, −9.214680108121570066410073116053, −8.790803481919396086710574280756, −7.35465707811293591364154997623, −6.49031981164757099297090506928, −5.94562703525766440971659985278, −3.98311266602636069799208741447, −3.15803445145612579308496980617, −1.48177681066133768791967466348, 0, 1.48177681066133768791967466348, 3.15803445145612579308496980617, 3.98311266602636069799208741447, 5.94562703525766440971659985278, 6.49031981164757099297090506928, 7.35465707811293591364154997623, 8.790803481919396086710574280756, 9.214680108121570066410073116053, 10.08091160105148083731026840322

Graph of the $Z$-function along the critical line