L(s) = 1 | + (−5 + 5i)2-s − 34i·4-s + 25·5-s + (40 − 40i)7-s + (90 + 90i)8-s + (−125 + 125i)10-s − 100·11-s + (205 + 205i)13-s + 400i·14-s − 356·16-s + (235 − 235i)17-s − 72i·19-s − 850i·20-s + (500 − 500i)22-s + (340 + 340i)23-s + ⋯ |
L(s) = 1 | + (−1.25 + 1.25i)2-s − 2.12i·4-s + 5-s + (0.816 − 0.816i)7-s + (1.40 + 1.40i)8-s + (−1.25 + 1.25i)10-s − 0.826·11-s + (1.21 + 1.21i)13-s + 2.04i·14-s − 1.39·16-s + (0.813 − 0.813i)17-s − 0.199i·19-s − 2.12i·20-s + (1.03 − 1.03i)22-s + (0.642 + 0.642i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.884644 + 0.493221i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.884644 + 0.493221i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 - 25T \) |
good | 2 | \( 1 + (5 - 5i)T - 16iT^{2} \) |
| 7 | \( 1 + (-40 + 40i)T - 2.40e3iT^{2} \) |
| 11 | \( 1 + 100T + 1.46e4T^{2} \) |
| 13 | \( 1 + (-205 - 205i)T + 2.85e4iT^{2} \) |
| 17 | \( 1 + (-235 + 235i)T - 8.35e4iT^{2} \) |
| 19 | \( 1 + 72iT - 1.30e5T^{2} \) |
| 23 | \( 1 + (-340 - 340i)T + 2.79e5iT^{2} \) |
| 29 | \( 1 + 450iT - 7.07e5T^{2} \) |
| 31 | \( 1 - 428T + 9.23e5T^{2} \) |
| 37 | \( 1 + (755 - 755i)T - 1.87e6iT^{2} \) |
| 41 | \( 1 - 950T + 2.82e6T^{2} \) |
| 43 | \( 1 + (1.22e3 + 1.22e3i)T + 3.41e6iT^{2} \) |
| 47 | \( 1 + (320 - 320i)T - 4.87e6iT^{2} \) |
| 53 | \( 1 + (-505 - 505i)T + 7.89e6iT^{2} \) |
| 59 | \( 1 + 6.30e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 3.80e3T + 1.38e7T^{2} \) |
| 67 | \( 1 + (-340 + 340i)T - 2.01e7iT^{2} \) |
| 71 | \( 1 + 3.40e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (-415 - 415i)T + 2.83e7iT^{2} \) |
| 79 | \( 1 - 6.73e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 + (680 + 680i)T + 4.74e7iT^{2} \) |
| 89 | \( 1 + 2.25e3iT - 6.27e7T^{2} \) |
| 97 | \( 1 + (-1.61e3 + 1.61e3i)T - 8.85e7iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.60902321995802157718247358034, −14.22887761342581863350793123036, −13.60469477727313725774403377547, −11.13863414495670208643152394214, −10.05764281745735347802030116292, −8.978313391807621173776114886713, −7.74570646486791488147425204999, −6.56798480812039893955511375980, −5.18008670430117112402853184422, −1.29531835230208170270457325946,
1.39363567087694261239185012619, 2.88303186380730606771898343364, 5.61584908961168104185922907072, 8.063258574828759974350640315673, 8.842516389332419937877742541108, 10.27816425535131573361315562552, 10.87071480473455952488790464967, 12.32798336888523913000149918694, 13.23243016215544772796885912275, 14.93335667345749484841391268839