L(s) = 1 | + (−1.58 + 1.58i)2-s − 1.00i·4-s + (−1.58 + 4.74i)5-s + (−5 + 5i)7-s + (−4.74 − 4.74i)8-s + (−5 − 10.0i)10-s + 15.8·11-s + (10 + 10i)13-s − 15.8i·14-s + 19·16-s + (3.16 − 3.16i)17-s − 18i·19-s + (4.74 + 1.58i)20-s + (−25 + 25i)22-s + (3.16 + 3.16i)23-s + ⋯ |
L(s) = 1 | + (−0.790 + 0.790i)2-s − 0.250i·4-s + (−0.316 + 0.948i)5-s + (−0.714 + 0.714i)7-s + (−0.592 − 0.592i)8-s + (−0.5 − 1.00i)10-s + 1.43·11-s + (0.769 + 0.769i)13-s − 1.12i·14-s + 1.18·16-s + (0.186 − 0.186i)17-s − 0.947i·19-s + (0.237 + 0.0790i)20-s + (−1.13 + 1.13i)22-s + (0.137 + 0.137i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.640 - 0.767i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.640 - 0.767i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.282755 + 0.604270i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.282755 + 0.604270i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (1.58 - 4.74i)T \) |
good | 2 | \( 1 + (1.58 - 1.58i)T - 4iT^{2} \) |
| 7 | \( 1 + (5 - 5i)T - 49iT^{2} \) |
| 11 | \( 1 - 15.8T + 121T^{2} \) |
| 13 | \( 1 + (-10 - 10i)T + 169iT^{2} \) |
| 17 | \( 1 + (-3.16 + 3.16i)T - 289iT^{2} \) |
| 19 | \( 1 + 18iT - 361T^{2} \) |
| 23 | \( 1 + (-3.16 - 3.16i)T + 529iT^{2} \) |
| 29 | \( 1 - 47.4iT - 841T^{2} \) |
| 31 | \( 1 - 8T + 961T^{2} \) |
| 37 | \( 1 + (-10 + 10i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 31.6T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-10 - 10i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-41.1 + 41.1i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (25.2 + 25.2i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 47.4iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 58T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-70 + 70i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 63.2T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-55 - 55i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 12iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (53.7 + 53.7i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 7.92e3T^{2} \) |
| 97 | \( 1 + (5 - 5i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.04267945303262888143365657873, −15.22377634246544515319830255750, −14.08158237580846356865275245363, −12.38260105783380688891419048359, −11.25567763653390900346230388590, −9.531570061267914645515259405950, −8.715102600631252747470021527276, −7.01301774144573481201652635605, −6.34599495110069946504508343750, −3.46164702436307439002314720361,
1.02551862370993760166493414529, 3.82324094743719083889806152585, 6.05875941023193682378623855277, 8.107359053703639145676963085828, 9.260270254761943393254256602495, 10.22841955442148026022444801860, 11.55497479671012218091792319421, 12.54584940612755552450589198395, 13.86588117448618704821133706944, 15.35778838387373975982491318513