L(s) = 1 | + (−0.891 + 0.238i)2-s + (−2.93 − 0.613i)3-s + (−2.72 + 1.57i)4-s + (−1.31 − 4.82i)5-s + (2.76 − 0.154i)6-s + (−11.0 + 2.96i)7-s + (4.66 − 4.66i)8-s + (8.24 + 3.60i)9-s + (2.32 + 3.98i)10-s + (−1.30 + 2.26i)11-s + (8.97 − 2.94i)12-s + (2.85 + 0.764i)13-s + (9.15 − 5.28i)14-s + (0.908 + 14.9i)15-s + (3.24 − 5.62i)16-s + (−13.6 − 13.6i)17-s + ⋯ |
L(s) = 1 | + (−0.445 + 0.119i)2-s + (−0.978 − 0.204i)3-s + (−0.681 + 0.393i)4-s + (−0.263 − 0.964i)5-s + (0.460 − 0.0257i)6-s + (−1.57 + 0.423i)7-s + (0.583 − 0.583i)8-s + (0.916 + 0.400i)9-s + (0.232 + 0.398i)10-s + (−0.118 + 0.205i)11-s + (0.747 − 0.245i)12-s + (0.219 + 0.0588i)13-s + (0.653 − 0.377i)14-s + (0.0605 + 0.998i)15-s + (0.203 − 0.351i)16-s + (−0.805 − 0.805i)17-s + ⋯ |
Λ(s)=(=(45s/2ΓC(s)L(s)(−0.972+0.231i)Λ(3−s)
Λ(s)=(=(45s/2ΓC(s+1)L(s)(−0.972+0.231i)Λ(1−s)
Degree: |
2 |
Conductor: |
45
= 32⋅5
|
Sign: |
−0.972+0.231i
|
Analytic conductor: |
1.22616 |
Root analytic conductor: |
1.10732 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ45(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 45, ( :1), −0.972+0.231i)
|
Particular Values
L(23) |
≈ |
0.00883755−0.0753363i |
L(21) |
≈ |
0.00883755−0.0753363i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(2.93+0.613i)T |
| 5 | 1+(1.31+4.82i)T |
good | 2 | 1+(0.891−0.238i)T+(3.46−2i)T2 |
| 7 | 1+(11.0−2.96i)T+(42.4−24.5i)T2 |
| 11 | 1+(1.30−2.26i)T+(−60.5−104.i)T2 |
| 13 | 1+(−2.85−0.764i)T+(146.+84.5i)T2 |
| 17 | 1+(13.6+13.6i)T+289iT2 |
| 19 | 1−11.4iT−361T2 |
| 23 | 1+(10.7+2.89i)T+(458.+264.5i)T2 |
| 29 | 1+(23.0+13.2i)T+(420.5+728.i)T2 |
| 31 | 1+(21.8+37.8i)T+(−480.5+832.i)T2 |
| 37 | 1+(−14.4−14.4i)T+1.36e3iT2 |
| 41 | 1+(0.924+1.60i)T+(−840.5+1.45e3i)T2 |
| 43 | 1+(−13.1−49.0i)T+(−1.60e3+924.5i)T2 |
| 47 | 1+(−61.3+16.4i)T+(1.91e3−1.10e3i)T2 |
| 53 | 1+(−6.43+6.43i)T−2.80e3iT2 |
| 59 | 1+(49.5−28.5i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(−16.8+29.1i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(8.41−31.4i)T+(−3.88e3−2.24e3i)T2 |
| 71 | 1+63.3T+5.04e3T2 |
| 73 | 1+(50.9−50.9i)T−5.32e3iT2 |
| 79 | 1+(59.5+34.4i)T+(3.12e3+5.40e3i)T2 |
| 83 | 1+(27.2+101.i)T+(−5.96e3+3.44e3i)T2 |
| 89 | 1+136.iT−7.92e3T2 |
| 97 | 1+(−35.3+9.45i)T+(8.14e3−4.70e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.74506975849466771794885377177, −13.28964233527661404395910286129, −12.83989734527563251362243609728, −11.77228005436347436422326954664, −9.922131869829286878968921186388, −9.075346681453765638725233321055, −7.48261849523490948154929272899, −5.88671328211566458818444045397, −4.23608471815439681462766068793, −0.10344797455491693729038421039,
3.88970192032924855507853808204, 5.91356579067965384402021214356, 7.07967646450504475361302308778, 9.195417246657395744438245237521, 10.36004510580348200770618132911, 10.92580357236198921807755371520, 12.65778505027315745170098916918, 13.71458643830547044720790113801, 15.24174971228115613056315835615, 16.22764442891380521289493301971