Properties

Label 2-45-1.1-c7-0-7
Degree $2$
Conductor $45$
Sign $1$
Analytic cond. $14.0573$
Root an. cond. $3.74931$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 22·2-s + 356·4-s + 125·5-s − 420·7-s + 5.01e3·8-s + 2.75e3·10-s + 2.94e3·11-s − 1.10e4·13-s − 9.24e3·14-s + 6.47e4·16-s + 1.65e4·17-s − 2.53e4·19-s + 4.45e4·20-s + 6.47e4·22-s + 5.88e3·23-s + 1.56e4·25-s − 2.42e5·26-s − 1.49e5·28-s − 1.63e5·29-s − 2.01e5·31-s + 7.83e5·32-s + 3.64e5·34-s − 5.25e4·35-s + 1.20e5·37-s − 5.58e5·38-s + 6.27e5·40-s + 1.15e5·41-s + ⋯
L(s)  = 1  + 1.94·2-s + 2.78·4-s + 0.447·5-s − 0.462·7-s + 3.46·8-s + 0.869·10-s + 0.666·11-s − 1.38·13-s − 0.899·14-s + 3.95·16-s + 0.816·17-s − 0.848·19-s + 1.24·20-s + 1.29·22-s + 0.100·23-s + 1/5·25-s − 2.70·26-s − 1.28·28-s − 1.24·29-s − 1.21·31-s + 4.22·32-s + 1.58·34-s − 0.206·35-s + 0.391·37-s − 1.64·38-s + 1.54·40-s + 0.262·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(45\)    =    \(3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(14.0573\)
Root analytic conductor: \(3.74931\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 45,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(5.978089246\)
\(L(\frac12)\) \(\approx\) \(5.978089246\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - p^{3} T \)
good2 \( 1 - 11 p T + p^{7} T^{2} \)
7 \( 1 + 60 p T + p^{7} T^{2} \)
11 \( 1 - 2944 T + p^{7} T^{2} \)
13 \( 1 + 11006 T + p^{7} T^{2} \)
17 \( 1 - 16546 T + p^{7} T^{2} \)
19 \( 1 + 25364 T + p^{7} T^{2} \)
23 \( 1 - 5880 T + p^{7} T^{2} \)
29 \( 1 + 163042 T + p^{7} T^{2} \)
31 \( 1 + 201600 T + p^{7} T^{2} \)
37 \( 1 - 120530 T + p^{7} T^{2} \)
41 \( 1 - 115910 T + p^{7} T^{2} \)
43 \( 1 + 19148 T + p^{7} T^{2} \)
47 \( 1 + 841016 T + p^{7} T^{2} \)
53 \( 1 + 501890 T + p^{7} T^{2} \)
59 \( 1 - 1586176 T + p^{7} T^{2} \)
61 \( 1 + 372962 T + p^{7} T^{2} \)
67 \( 1 - 4561044 T + p^{7} T^{2} \)
71 \( 1 + 1512832 T + p^{7} T^{2} \)
73 \( 1 + 1522910 T + p^{7} T^{2} \)
79 \( 1 - 4231920 T + p^{7} T^{2} \)
83 \( 1 - 1854204 T + p^{7} T^{2} \)
89 \( 1 - 6888174 T + p^{7} T^{2} \)
97 \( 1 - 3700034 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.44978273376319662539027933222, −13.08704114095014083100055736729, −12.42510284424430222877950530449, −11.24533865751051091497724771473, −9.828793523850557136254307972011, −7.35438233457823198527120495680, −6.20298061821349618068947673694, −5.00145464621662400621284126901, −3.54536941179123188100747666530, −2.07041480942734506608398712204, 2.07041480942734506608398712204, 3.54536941179123188100747666530, 5.00145464621662400621284126901, 6.20298061821349618068947673694, 7.35438233457823198527120495680, 9.828793523850557136254307972011, 11.24533865751051091497724771473, 12.42510284424430222877950530449, 13.08704114095014083100055736729, 14.44978273376319662539027933222

Graph of the $Z$-function along the critical line