Properties

Label 2-45-1.1-c5-0-5
Degree $2$
Conductor $45$
Sign $1$
Analytic cond. $7.21727$
Root an. cond. $2.68649$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.52·2-s + 40.6·4-s + 25·5-s + 160.·7-s + 73.3·8-s + 213.·10-s + 279.·11-s − 541.·13-s + 1.36e3·14-s − 674.·16-s + 777.·17-s − 2.68e3·19-s + 1.01e3·20-s + 2.38e3·22-s − 3.69e3·23-s + 625·25-s − 4.61e3·26-s + 6.51e3·28-s + 8.35e3·29-s − 262.·31-s − 8.09e3·32-s + 6.62e3·34-s + 4.01e3·35-s − 1.49e4·37-s − 2.28e4·38-s + 1.83e3·40-s − 7.98e3·41-s + ⋯
L(s)  = 1  + 1.50·2-s + 1.26·4-s + 0.447·5-s + 1.23·7-s + 0.404·8-s + 0.673·10-s + 0.696·11-s − 0.888·13-s + 1.86·14-s − 0.658·16-s + 0.652·17-s − 1.70·19-s + 0.567·20-s + 1.04·22-s − 1.45·23-s + 0.200·25-s − 1.33·26-s + 1.57·28-s + 1.84·29-s − 0.0491·31-s − 1.39·32-s + 0.982·34-s + 0.553·35-s − 1.79·37-s − 2.56·38-s + 0.181·40-s − 0.742·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(45\)    =    \(3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(7.21727\)
Root analytic conductor: \(2.68649\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 45,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.837546246\)
\(L(\frac12)\) \(\approx\) \(3.837546246\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 25T \)
good2 \( 1 - 8.52T + 32T^{2} \)
7 \( 1 - 160.T + 1.68e4T^{2} \)
11 \( 1 - 279.T + 1.61e5T^{2} \)
13 \( 1 + 541.T + 3.71e5T^{2} \)
17 \( 1 - 777.T + 1.41e6T^{2} \)
19 \( 1 + 2.68e3T + 2.47e6T^{2} \)
23 \( 1 + 3.69e3T + 6.43e6T^{2} \)
29 \( 1 - 8.35e3T + 2.05e7T^{2} \)
31 \( 1 + 262.T + 2.86e7T^{2} \)
37 \( 1 + 1.49e4T + 6.93e7T^{2} \)
41 \( 1 + 7.98e3T + 1.15e8T^{2} \)
43 \( 1 - 5.13e3T + 1.47e8T^{2} \)
47 \( 1 - 1.05e4T + 2.29e8T^{2} \)
53 \( 1 - 2.10e4T + 4.18e8T^{2} \)
59 \( 1 - 2.56e4T + 7.14e8T^{2} \)
61 \( 1 - 8.19e3T + 8.44e8T^{2} \)
67 \( 1 - 5.19e4T + 1.35e9T^{2} \)
71 \( 1 - 2.36e4T + 1.80e9T^{2} \)
73 \( 1 - 2.09e4T + 2.07e9T^{2} \)
79 \( 1 + 3.92e4T + 3.07e9T^{2} \)
83 \( 1 - 3.59e4T + 3.93e9T^{2} \)
89 \( 1 + 9.40e4T + 5.58e9T^{2} \)
97 \( 1 + 1.22e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.37784536888453374327419702333, −14.03683634096722307094210643198, −12.48918967488013551504117405756, −11.77617916094901859396700299413, −10.32377565394036678169206692921, −8.460563802580778649482788226914, −6.66667448731695673263077309964, −5.29318868746665421033732889688, −4.15975404841838252730105105759, −2.13598064014564555158892296757, 2.13598064014564555158892296757, 4.15975404841838252730105105759, 5.29318868746665421033732889688, 6.66667448731695673263077309964, 8.460563802580778649482788226914, 10.32377565394036678169206692921, 11.77617916094901859396700299413, 12.48918967488013551504117405756, 14.03683634096722307094210643198, 14.37784536888453374327419702333

Graph of the $Z$-function along the critical line